![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzrev3 | Structured version Visualization version GIF version |
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
Ref | Expression |
---|---|
fzrev3 | ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
2 | elfzel1 13441 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | elfzel2 13440 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
6 | 1, 3, 5 | 3jca 1129 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | simpl 484 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
8 | elfzel1 13441 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
9 | 8 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
10 | elfzel2 13440 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
11 | 10 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
12 | 7, 9, 11 | 3jca 1129 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
13 | zcn 12505 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 12505 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | pncan 11408 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
16 | pncan2 11409 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
17 | 15, 16 | oveq12d 7376 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
18 | 13, 14, 17 | syl2an 597 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
19 | 18 | eleq2d 2824 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
20 | 19 | 3adant1 1131 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
21 | 3simpc 1151 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
22 | zaddcl 12544 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
23 | 22 | 3adant1 1131 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
24 | simp1 1137 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
25 | fzrev 13505 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | |
26 | 21, 23, 24, 25 | syl12anc 836 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
27 | 20, 26 | bitr3d 281 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
28 | 6, 12, 27 | pm5.21nd 801 | 1 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 (class class class)co 7358 ℂcc 11050 + caddc 11055 − cmin 11386 ℤcz 12500 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: fzrev3i 13509 |
Copyright terms: Public domain | W3C validator |