Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzrev3 | Structured version Visualization version GIF version |
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
Ref | Expression |
---|---|
fzrev3 | ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
2 | elfzel1 13184 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | elfzel2 13183 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
6 | 1, 3, 5 | 3jca 1126 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
8 | elfzel1 13184 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
10 | elfzel2 13183 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
12 | 7, 9, 11 | 3jca 1126 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
13 | zcn 12254 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 12254 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | pncan 11157 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
16 | pncan2 11158 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
17 | 15, 16 | oveq12d 7273 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
18 | 13, 14, 17 | syl2an 595 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
19 | 18 | eleq2d 2824 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
20 | 19 | 3adant1 1128 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
21 | 3simpc 1148 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
22 | zaddcl 12290 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
23 | 22 | 3adant1 1128 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
24 | simp1 1134 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
25 | fzrev 13248 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | |
26 | 21, 23, 24, 25 | syl12anc 833 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
27 | 20, 26 | bitr3d 280 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
28 | 6, 12, 27 | pm5.21nd 798 | 1 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 ℤcz 12249 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fzrev3i 13252 |
Copyright terms: Public domain | W3C validator |