Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posrasymb Structured version   Visualization version   GIF version

Theorem posrasymb 30670
Description: A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
posrasymb.b 𝐵 = (Base‘𝐾)
posrasymb.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
posrasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posrasymb
StepHypRef Expression
1 posrasymb.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21breqi 5036 . . . 4 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
3 simp2 1134 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 simp3 1135 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 brxp 5565 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
63, 4, 5sylanbrc 586 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 5082 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 542 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
102, 9syl5bb 286 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋(le‘𝐾)𝑌))
111breqi 5036 . . . 4 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
12 brxp 5565 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
134, 3, 12sylanbrc 586 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
14 brin 5082 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1514rbaib 542 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1613, 15syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1711, 16syl5bb 286 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑌(le‘𝐾)𝑋))
1810, 17anbi12d 633 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
19 posrasymb.b . . 3 𝐵 = (Base‘𝐾)
20 eqid 2798 . . 3 (le‘𝐾) = (le‘𝐾)
2119, 20posasymb 17554 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
2218, 21bitrd 282 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cin 3880   class class class wbr 5030   × cxp 5517  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-iota 6283  df-fv 6332  df-proset 17530  df-poset 17548
This theorem is referenced by:  ordtconnlem1  31277
  Copyright terms: Public domain W3C validator