Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posrasymb Structured version   Visualization version   GIF version

Theorem posrasymb 31145
Description: A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
posrasymb.b 𝐵 = (Base‘𝐾)
posrasymb.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
posrasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posrasymb
StepHypRef Expression
1 posrasymb.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21breqi 5076 . . . 4 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
3 simp2 1135 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 simp3 1136 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 brxp 5627 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
63, 4, 5sylanbrc 582 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 5122 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 538 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
102, 9syl5bb 282 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋(le‘𝐾)𝑌))
111breqi 5076 . . . 4 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
12 brxp 5627 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
134, 3, 12sylanbrc 582 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
14 brin 5122 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1514rbaib 538 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1613, 15syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1711, 16syl5bb 282 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑌(le‘𝐾)𝑋))
1810, 17anbi12d 630 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
19 posrasymb.b . . 3 𝐵 = (Base‘𝐾)
20 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
2119, 20posasymb 17952 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
2218, 21bitrd 278 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882   class class class wbr 5070   × cxp 5578  cfv 6418  Basecbs 16840  lecple 16895  Posetcpo 17940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-iota 6376  df-fv 6426  df-proset 17928  df-poset 17946
This theorem is referenced by:  ordtconnlem1  31776
  Copyright terms: Public domain W3C validator