| Step | Hyp | Ref
| Expression |
| 1 | | ovexd 7445 |
. 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ V) |
| 2 | | eqid 2736 |
. . . . . . 7
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) |
| 3 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 4 | 2, 3 | ressbas 17262 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹 ↾s 𝐴))) |
| 5 | | inss2 4218 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹) |
| 6 | 4, 5 | eqsstrrdi 4009 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
| 7 | 6 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
| 8 | | eqid 2736 |
. . . . . . 7
⊢
(le‘𝐹) =
(le‘𝐹) |
| 9 | 3, 8 | ispos 18331 |
. . . . . 6
⊢ (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 10 | 9 | simprbi 496 |
. . . . 5
⊢ (𝐹 ∈ Poset →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
| 12 | | ssralv 4032 |
. . . . . . . 8
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑧 ∈
(Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 13 | 12 | ralimdv 3155 |
. . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 14 | | ssralv 4032 |
. . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 15 | 13, 14 | syld 47 |
. . . . . 6
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 16 | 15 | ralimdv 3155 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 17 | | ssralv 4032 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 18 | 16, 17 | syld 47 |
. . . 4
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
| 19 | 7, 11, 18 | sylc 65 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
| 20 | 2, 8 | ressle 17399 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
| 22 | | breq 5126 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑥 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑥)) |
| 23 | | breq 5126 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑦 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑦)) |
| 24 | | breq 5126 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑥 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
| 25 | 23, 24 | anbi12d 632 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
| 26 | 25 | imbi1d 341 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦))) |
| 27 | | breq 5126 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑧 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧)) |
| 28 | 23, 27 | anbi12d 632 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧))) |
| 29 | | breq 5126 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑧 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)) |
| 30 | 28, 29 | imbi12d 344 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) |
| 31 | 22, 26, 30 | 3anbi123d 1438 |
. . . . . 6
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
| 32 | 31 | ralbidv 3164 |
. . . . 5
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑧 ∈
(Base‘(𝐹
↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
| 33 | 32 | 2ralbidv 3209 |
. . . 4
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
| 34 | 21, 33 | syl 17 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
| 35 | 19, 34 | mpbid 232 |
. 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) |
| 36 | | eqid 2736 |
. . 3
⊢
(Base‘(𝐹
↾s 𝐴)) =
(Base‘(𝐹
↾s 𝐴)) |
| 37 | | eqid 2736 |
. . 3
⊢
(le‘(𝐹
↾s 𝐴)) =
(le‘(𝐹
↾s 𝐴)) |
| 38 | 36, 37 | ispos 18331 |
. 2
⊢ ((𝐹 ↾s 𝐴) ∈ Poset ↔ ((𝐹 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
| 39 | 1, 35, 38 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |