Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resspos Structured version   Visualization version   GIF version

Theorem resspos 30917
Description: The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resspos ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)

Proof of Theorem resspos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7226 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ V)
2 eqid 2736 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
3 eqid 2736 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
42, 3ressbas 16738 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
5 inss2 4130 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
64, 5eqsstrrdi 3942 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
76adantl 485 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
8 eqid 2736 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
93, 8ispos 17775 . . . . . 6 (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
109simprbi 500 . . . . 5 (𝐹 ∈ Poset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
1110adantr 484 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
12 ssralv 3953 . . . . . . . 8 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1312ralimdv 3091 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
14 ssralv 3953 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1513, 14syld 47 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1615ralimdv 3091 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
17 ssralv 3953 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1816, 17syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
197, 11, 18sylc 65 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
202, 8ressle 16856 . . . . 5 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2120adantl 485 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (le‘𝐹) = (le‘(𝐹s 𝐴)))
22 breq 5041 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑥𝑥(le‘(𝐹s 𝐴))𝑥))
23 breq 5041 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
24 breq 5041 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2523, 24anbi12d 634 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2625imbi1d 345 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦)))
27 breq 5041 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑧𝑦(le‘(𝐹s 𝐴))𝑧))
2823, 27anbi12d 634 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧)))
29 breq 5041 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑧𝑥(le‘(𝐹s 𝐴))𝑧))
3028, 29imbi12d 348 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
3122, 26, 303anbi123d 1438 . . . . . 6 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3231ralbidv 3108 . . . . 5 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
33322ralbidv 3110 . . . 4 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3421, 33syl 17 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3519, 34mpbid 235 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
36 eqid 2736 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
37 eqid 2736 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
3836, 37ispos 17775 . 2 ((𝐹s 𝐴) ∈ Poset ↔ ((𝐹s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
391, 35, 38sylanbrc 586 1 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  cin 3852  wss 3853   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  s cress 16667  lecple 16756  Posetcpo 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-dec 12259  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-ple 16769  df-poset 17774
This theorem is referenced by:  resstos  30918
  Copyright terms: Public domain W3C validator