| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovexd 7467 | . 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ V) | 
| 2 |  | eqid 2736 | . . . . . . 7
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) | 
| 3 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) | 
| 4 | 2, 3 | ressbas 17281 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹 ↾s 𝐴))) | 
| 5 |  | inss2 4237 | . . . . . 6
⊢ (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹) | 
| 6 | 4, 5 | eqsstrrdi 4028 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) | 
| 7 | 6 | adantl 481 | . . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) | 
| 8 |  | eqid 2736 | . . . . . . 7
⊢
(le‘𝐹) =
(le‘𝐹) | 
| 9 | 3, 8 | ispos 18361 | . . . . . 6
⊢ (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 10 | 9 | simprbi 496 | . . . . 5
⊢ (𝐹 ∈ Poset →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) | 
| 11 | 10 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) | 
| 12 |  | ssralv 4051 | . . . . . . . 8
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑧 ∈
(Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 13 | 12 | ralimdv 3168 | . . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 14 |  | ssralv 4051 | . . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 15 | 13, 14 | syld 47 | . . . . . 6
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 16 | 15 | ralimdv 3168 | . . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 17 |  | ssralv 4051 | . . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 18 | 16, 17 | syld 47 | . . . 4
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) | 
| 19 | 7, 11, 18 | sylc 65 | . . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) | 
| 20 | 2, 8 | ressle 17425 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) | 
| 21 | 20 | adantl 481 | . . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) | 
| 22 |  | breq 5144 | . . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑥 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑥)) | 
| 23 |  | breq 5144 | . . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑦 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑦)) | 
| 24 |  | breq 5144 | . . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑥 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) | 
| 25 | 23, 24 | anbi12d 632 | . . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) | 
| 26 | 25 | imbi1d 341 | . . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦))) | 
| 27 |  | breq 5144 | . . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑧 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧)) | 
| 28 | 23, 27 | anbi12d 632 | . . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧))) | 
| 29 |  | breq 5144 | . . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑧 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)) | 
| 30 | 28, 29 | imbi12d 344 | . . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) | 
| 31 | 22, 26, 30 | 3anbi123d 1437 | . . . . . 6
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) | 
| 32 | 31 | ralbidv 3177 | . . . . 5
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑧 ∈
(Base‘(𝐹
↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) | 
| 33 | 32 | 2ralbidv 3220 | . . . 4
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) | 
| 34 | 21, 33 | syl 17 | . . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) | 
| 35 | 19, 34 | mpbid 232 | . 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) | 
| 36 |  | eqid 2736 | . . 3
⊢
(Base‘(𝐹
↾s 𝐴)) =
(Base‘(𝐹
↾s 𝐴)) | 
| 37 |  | eqid 2736 | . . 3
⊢
(le‘(𝐹
↾s 𝐴)) =
(le‘(𝐹
↾s 𝐴)) | 
| 38 | 36, 37 | ispos 18361 | . 2
⊢ ((𝐹 ↾s 𝐴) ∈ Poset ↔ ((𝐹 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) | 
| 39 | 1, 35, 38 | sylanbrc 583 | 1
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |