MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspos Structured version   Visualization version   GIF version

Theorem resspos 18335
Description: The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resspos ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)

Proof of Theorem resspos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7384 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ V)
2 eqid 2729 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
3 eqid 2729 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
42, 3ressbas 17147 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
5 inss2 4189 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
64, 5eqsstrrdi 3981 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
76adantl 481 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
8 eqid 2729 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
93, 8ispos 18220 . . . . . 6 (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
109simprbi 496 . . . . 5 (𝐹 ∈ Poset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
1110adantr 480 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
12 ssralv 4004 . . . . . . . 8 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1312ralimdv 3143 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
14 ssralv 4004 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1513, 14syld 47 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1615ralimdv 3143 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
17 ssralv 4004 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1816, 17syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
197, 11, 18sylc 65 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
202, 8ressle 17284 . . . . 5 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2120adantl 481 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (le‘𝐹) = (le‘(𝐹s 𝐴)))
22 breq 5094 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑥𝑥(le‘(𝐹s 𝐴))𝑥))
23 breq 5094 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
24 breq 5094 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2523, 24anbi12d 632 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2625imbi1d 341 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦)))
27 breq 5094 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑧𝑦(le‘(𝐹s 𝐴))𝑧))
2823, 27anbi12d 632 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧)))
29 breq 5094 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑧𝑥(le‘(𝐹s 𝐴))𝑧))
3028, 29imbi12d 344 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
3122, 26, 303anbi123d 1438 . . . . . 6 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3231ralbidv 3152 . . . . 5 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
33322ralbidv 3193 . . . 4 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3421, 33syl 17 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3519, 34mpbid 232 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
36 eqid 2729 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
37 eqid 2729 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
3836, 37ispos 18220 . 2 ((𝐹s 𝐴) ∈ Poset ↔ ((𝐹s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
391, 35, 38sylanbrc 583 1 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cin 3902  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  lecple 17168  Posetcpo 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-ple 17181  df-poset 18219
This theorem is referenced by:  resstos  18336
  Copyright terms: Public domain W3C validator