Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resspos Structured version   Visualization version   GIF version

Theorem resspos 32865
Description: The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resspos ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)

Proof of Theorem resspos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7404 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ V)
2 eqid 2729 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
3 eqid 2729 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
42, 3ressbas 17182 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
5 inss2 4197 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
64, 5eqsstrrdi 3989 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
76adantl 481 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
8 eqid 2729 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
93, 8ispos 18251 . . . . . 6 (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
109simprbi 496 . . . . 5 (𝐹 ∈ Poset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
1110adantr 480 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
12 ssralv 4012 . . . . . . . 8 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1312ralimdv 3147 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
14 ssralv 4012 . . . . . . 7 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1513, 14syld 47 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1615ralimdv 3147 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
17 ssralv 4012 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
1816, 17syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))))
197, 11, 18sylc 65 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))
202, 8ressle 17319 . . . . 5 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2120adantl 481 . . . 4 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (le‘𝐹) = (le‘(𝐹s 𝐴)))
22 breq 5104 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑥𝑥(le‘(𝐹s 𝐴))𝑥))
23 breq 5104 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
24 breq 5104 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2523, 24anbi12d 632 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2625imbi1d 341 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦)))
27 breq 5104 . . . . . . . . 9 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑦(le‘𝐹)𝑧𝑦(le‘(𝐹s 𝐴))𝑧))
2823, 27anbi12d 632 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧)))
29 breq 5104 . . . . . . . 8 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (𝑥(le‘𝐹)𝑧𝑥(le‘(𝐹s 𝐴))𝑧))
3028, 29imbi12d 344 . . . . . . 7 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
3122, 26, 303anbi123d 1438 . . . . . 6 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3231ralbidv 3156 . . . . 5 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
33322ralbidv 3199 . . . 4 ((le‘𝐹) = (le‘(𝐹s 𝐴)) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3421, 33syl 17 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
3519, 34mpbid 232 . 2 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧)))
36 eqid 2729 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
37 eqid 2729 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
3836, 37ispos 18251 . 2 ((𝐹s 𝐴) ∈ Poset ↔ ((𝐹s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))∀𝑧 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑧) → 𝑥(le‘(𝐹s 𝐴))𝑧))))
391, 35, 38sylanbrc 583 1 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  lecple 17203  Posetcpo 18244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-ple 17216  df-poset 18250
This theorem is referenced by:  resstos  32866
  Copyright terms: Public domain W3C validator