Step | Hyp | Ref
| Expression |
1 | | ovexd 7290 |
. 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ V) |
2 | | eqid 2738 |
. . . . . . 7
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) |
4 | 2, 3 | ressbas 16873 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹 ↾s 𝐴))) |
5 | | inss2 4160 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹) |
6 | 4, 5 | eqsstrrdi 3972 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
7 | 6 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐹) =
(le‘𝐹) |
9 | 3, 8 | ispos 17947 |
. . . . . 6
⊢ (𝐹 ∈ Poset ↔ (𝐹 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
10 | 9 | simprbi 496 |
. . . . 5
⊢ (𝐹 ∈ Poset →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
12 | | ssralv 3983 |
. . . . . . . 8
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑧 ∈
(Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
13 | 12 | ralimdv 3103 |
. . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
14 | | ssralv 3983 |
. . . . . . 7
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
15 | 13, 14 | syld 47 |
. . . . . 6
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
16 | 15 | ralimdv 3103 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
17 | | ssralv 3983 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
18 | 16, 17 | syld 47 |
. . . 4
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)))) |
19 | 7, 11, 18 | sylc 65 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧))) |
20 | 2, 8 | ressle 17013 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
21 | 20 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
22 | | breq 5072 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑥 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑥)) |
23 | | breq 5072 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑦 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑦)) |
24 | | breq 5072 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑥 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
25 | 23, 24 | anbi12d 630 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
26 | 25 | imbi1d 341 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦))) |
27 | | breq 5072 |
. . . . . . . . 9
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑦(le‘𝐹)𝑧 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧)) |
28 | 23, 27 | anbi12d 630 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧))) |
29 | | breq 5072 |
. . . . . . . 8
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (𝑥(le‘𝐹)𝑧 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)) |
30 | 28, 29 | imbi12d 344 |
. . . . . . 7
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧) ↔ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) |
31 | 22, 26, 30 | 3anbi123d 1434 |
. . . . . 6
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ ((𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
32 | 31 | ralbidv 3120 |
. . . . 5
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑧 ∈
(Base‘(𝐹
↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
33 | 32 | 2ralbidv 3122 |
. . . 4
⊢
((le‘𝐹) =
(le‘(𝐹
↾s 𝐴))
→ (∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
34 | 21, 33 | syl 17 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑥 ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐹)𝑦 ∧ 𝑦(le‘𝐹)𝑧) → 𝑥(le‘𝐹)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
35 | 19, 34 | mpbid 231 |
. 2
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧))) |
36 | | eqid 2738 |
. . 3
⊢
(Base‘(𝐹
↾s 𝐴)) =
(Base‘(𝐹
↾s 𝐴)) |
37 | | eqid 2738 |
. . 3
⊢
(le‘(𝐹
↾s 𝐴)) =
(le‘(𝐹
↾s 𝐴)) |
38 | 36, 37 | ispos 17947 |
. 2
⊢ ((𝐹 ↾s 𝐴) ∈ Poset ↔ ((𝐹 ↾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑧 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∧ 𝑦(le‘(𝐹 ↾s 𝐴))𝑧) → 𝑥(le‘(𝐹 ↾s 𝐴))𝑧)))) |
39 | 1, 35, 38 | sylanbrc 582 |
1
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |