|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > predpo | Structured version Visualization version GIF version | ||
| Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| predpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfpo2 6315 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) | 
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) | 
| 4 | simpr 484 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑋 ∈ 𝐴) | |
| 6 | predtrss 6342 | . . 3 ⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | 
| 8 | 7 | ex 412 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 I cid 5576 Po wpo 5589 × cxp 5682 ↾ cres 5686 ∘ ccom 5688 Predcpred 6319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-po 5591 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 | 
| This theorem is referenced by: predso 6344 | 
| Copyright terms: Public domain | W3C validator |