MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpo Structured version   Visualization version   GIF version

Theorem predpo 6343
Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.)
Assertion
Ref Expression
predpo ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))

Proof of Theorem predpo
StepHypRef Expression
1 dfpo2 6315 . . . . 5 (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅))
21simprbi 496 . . . 4 (𝑅 Po 𝐴 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)
32ad2antrr 726 . . 3 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)
4 simpr 484 . . 3 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))
5 simplr 768 . . 3 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑋𝐴)
6 predtrss 6342 . . 3 ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))
73, 4, 5, 6syl3anc 1372 . 2 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))
87ex 412 1 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cin 3949  wss 3950  c0 4332   I cid 5576   Po wpo 5589   × cxp 5682  cres 5686  ccom 5688  Predcpred 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-po 5591  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320
This theorem is referenced by:  predso  6344
  Copyright terms: Public domain W3C validator