![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpo | Structured version Visualization version GIF version |
Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) |
Ref | Expression |
---|---|
predpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpo2 6249 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | |
2 | 1 | simprbi 498 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
3 | 2 | ad2antrr 725 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
4 | simpr 486 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) | |
5 | simplr 768 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑋 ∈ 𝐴) | |
6 | predtrss 6277 | . . 3 ⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
8 | 7 | ex 414 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3910 ⊆ wss 3911 ∅c0 4283 I cid 5531 Po wpo 5544 × cxp 5632 ↾ cres 5636 ∘ ccom 5638 Predcpred 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-po 5546 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 |
This theorem is referenced by: predso 6279 |
Copyright terms: Public domain | W3C validator |