Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predpo | Structured version Visualization version GIF version |
Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) |
Ref | Expression |
---|---|
predpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpo2 6199 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | |
2 | 1 | simprbi 497 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
3 | 2 | ad2antrr 723 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
4 | simpr 485 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) | |
5 | simplr 766 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑋 ∈ 𝐴) | |
6 | predtrss 6225 | . . 3 ⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | . 2 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
8 | 7 | ex 413 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 I cid 5488 Po wpo 5501 × cxp 5587 ↾ cres 5591 ∘ ccom 5593 Predcpred 6201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-po 5503 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 |
This theorem is referenced by: predso 6227 |
Copyright terms: Public domain | W3C validator |