| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predpo | Structured version Visualization version GIF version | ||
| Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| predpo | ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpo2 6269 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
| 3 | 2 | ad2antrr 726 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅) |
| 4 | simpr 484 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑋 ∈ 𝐴) | |
| 6 | predtrss 6295 | . . 3 ⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) |
| 8 | 7 | ex 412 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 I cid 5532 Po wpo 5544 × cxp 5636 ↾ cres 5640 ∘ ccom 5642 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-po 5546 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: predso 6297 |
| Copyright terms: Public domain | W3C validator |