Step | Hyp | Ref
| Expression |
1 | | prjsprel.1 |
. . . . 5
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
2 | 1 | prjsprel 40020 |
. . . 4
⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
3 | 2 | simprbi 500 |
. . 3
⊢ (𝑋 ∼ 𝑌 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) |
4 | 3 | ad2antrl 728 |
. 2
⊢ ((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) |
5 | | simplrr 778 |
. . . 4
⊢ (((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) → 𝑌 ∼ 𝑍) |
6 | 1 | prjsprel 40020 |
. . . . 5
⊢ (𝑌 ∼ 𝑍 ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑍))) |
7 | 6 | simprbi 500 |
. . . 4
⊢ (𝑌 ∼ 𝑍 → ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑍)) |
8 | 5, 7 | syl 17 |
. . 3
⊢ (((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) → ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑍)) |
9 | | simplrl 777 |
. . . . . 6
⊢ (((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ ((𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌)) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍)))) → 𝑋 ∼ 𝑌) |
10 | 9 | anassrs 471 |
. . . . 5
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑋 ∼ 𝑌) |
11 | | simpll 767 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ 𝐵) |
12 | 2, 11 | sylbi 220 |
. . . . 5
⊢ (𝑋 ∼ 𝑌 → 𝑋 ∈ 𝐵) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑋 ∈ 𝐵) |
14 | 5 | adantr 484 |
. . . . 5
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑌 ∼ 𝑍) |
15 | | simplr 769 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍 ∈ 𝐵) |
16 | 6, 15 | sylbi 220 |
. . . . 5
⊢ (𝑌 ∼ 𝑍 → 𝑍 ∈ 𝐵) |
17 | 14, 16 | syl 17 |
. . . 4
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ 𝐵) |
18 | | prjspertr.s |
. . . . . . . 8
⊢ 𝑆 = (Scalar‘𝑉) |
19 | 18 | lmodring 19761 |
. . . . . . 7
⊢ (𝑉 ∈ LMod → 𝑆 ∈ Ring) |
20 | 19 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring) |
21 | | simplrl 777 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑚 ∈ 𝐾) |
22 | | simprl 771 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑛 ∈ 𝐾) |
23 | | prjspertr.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝑆) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝑆) = (.r‘𝑆) |
25 | 23, 24 | ringcl 19433 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ 𝑚 ∈ 𝐾 ∧ 𝑛 ∈ 𝐾) → (𝑚(.r‘𝑆)𝑛) ∈ 𝐾) |
26 | 20, 21, 22, 25 | syl3anc 1372 |
. . . . 5
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → (𝑚(.r‘𝑆)𝑛) ∈ 𝐾) |
27 | | oveq1 7177 |
. . . . . . 7
⊢ (𝑜 = (𝑚(.r‘𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r‘𝑆)𝑛) · 𝑍)) |
28 | 27 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑜 = (𝑚(.r‘𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r‘𝑆)𝑛) · 𝑍))) |
29 | 28 | adantl 485 |
. . . . 5
⊢
(((((𝑉 ∈ LMod
∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) ∧ 𝑜 = (𝑚(.r‘𝑆)𝑛)) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r‘𝑆)𝑛) · 𝑍))) |
30 | | simprr 773 |
. . . . . . 7
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍)) |
31 | 30 | oveq2d 7186 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍))) |
32 | | simplrr 778 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌)) |
33 | | simplll 775 |
. . . . . . 7
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod) |
34 | | eldifi 4017 |
. . . . . . . . 9
⊢ (𝑍 ∈ ((Base‘𝑉) ∖
{(0g‘𝑉)})
→ 𝑍 ∈
(Base‘𝑉)) |
35 | | prjspertr.b |
. . . . . . . . 9
⊢ 𝐵 = ((Base‘𝑉) ∖
{(0g‘𝑉)}) |
36 | 34, 35 | eleq2s 2851 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝐵 → 𝑍 ∈ (Base‘𝑉)) |
37 | 17, 36 | syl 17 |
. . . . . . 7
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉)) |
38 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑉) =
(Base‘𝑉) |
39 | | prjspertr.x |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑉) |
40 | 38, 18, 39, 23, 24 | lmodvsass 19778 |
. . . . . . 7
⊢ ((𝑉 ∈ LMod ∧ (𝑚 ∈ 𝐾 ∧ 𝑛 ∈ 𝐾 ∧ 𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r‘𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍))) |
41 | 33, 21, 22, 37, 40 | syl13anc 1373 |
. . . . . 6
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r‘𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍))) |
42 | 31, 32, 41 | 3eqtr4d 2783 |
. . . . 5
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r‘𝑆)𝑛) · 𝑍)) |
43 | 26, 29, 42 | rspcedvd 3529 |
. . . 4
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → ∃𝑜 ∈ 𝐾 𝑋 = (𝑜 · 𝑍)) |
44 | 1 | prjsprel 40020 |
. . . 4
⊢ (𝑋 ∼ 𝑍 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ∃𝑜 ∈ 𝐾 𝑋 = (𝑜 · 𝑍))) |
45 | 13, 17, 43, 44 | syl21anbrc 1345 |
. . 3
⊢ ((((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) ∧ (𝑛 ∈ 𝐾 ∧ 𝑌 = (𝑛 · 𝑍))) → 𝑋 ∼ 𝑍) |
46 | 8, 45 | rexlimddv 3201 |
. 2
⊢ (((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) ∧ (𝑚 ∈ 𝐾 ∧ 𝑋 = (𝑚 · 𝑌))) → 𝑋 ∼ 𝑍) |
47 | 4, 46 | rexlimddv 3201 |
1
⊢ ((𝑉 ∈ LMod ∧ (𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍)) → 𝑋 ∼ 𝑍) |