Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspertr Structured version   Visualization version   GIF version

Theorem prjspertr 42586
Description: The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspertr ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑍,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspertr
Dummy variables 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21prjsprel 42585 . . . 4 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
32simprbi 496 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
43ad2antrl 728 . 2 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5 simplrr 777 . . . 4 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑌 𝑍)
61prjsprel 42585 . . . . 5 (𝑌 𝑍 ↔ ((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)))
76simprbi 496 . . . 4 (𝑌 𝑍 → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
85, 7syl 17 . . 3 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
9 simplrl 776 . . . . . 6 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ ((𝑚𝐾𝑋 = (𝑚 · 𝑌)) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍)))) → 𝑋 𝑌)
109anassrs 467 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑌)
11 simpll 766 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
122, 11sylbi 217 . . . . 5 (𝑋 𝑌𝑋𝐵)
1310, 12syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋𝐵)
145adantr 480 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 𝑍)
15 simplr 768 . . . . . 6 (((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍𝐵)
166, 15sylbi 217 . . . . 5 (𝑌 𝑍𝑍𝐵)
1714, 16syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍𝐵)
18 oveq1 7396 . . . . . 6 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r𝑆)𝑛) · 𝑍))
1918eqeq2d 2741 . . . . 5 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
20 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
21 eqid 2730 . . . . . 6 (.r𝑆) = (.r𝑆)
22 prjspertr.s . . . . . . . 8 𝑆 = (Scalar‘𝑉)
2322lmodring 20780 . . . . . . 7 (𝑉 ∈ LMod → 𝑆 ∈ Ring)
2423ad3antrrr 730 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring)
25 simplrl 776 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑚𝐾)
26 simprl 770 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑛𝐾)
2720, 21, 24, 25, 26ringcld 20175 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
28 simprr 772 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍))
2928oveq2d 7405 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍)))
30 simplrr 777 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌))
31 simplll 774 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod)
32 eldifi 4096 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑍 ∈ (Base‘𝑉))
33 prjspertr.b . . . . . . . . 9 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
3432, 33eleq2s 2847 . . . . . . . 8 (𝑍𝐵𝑍 ∈ (Base‘𝑉))
3517, 34syl 17 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉))
36 eqid 2730 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
37 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
3836, 22, 37, 20, 21lmodvsass 20799 . . . . . . 7 ((𝑉 ∈ LMod ∧ (𝑚𝐾𝑛𝐾𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
3931, 25, 26, 35, 38syl13anc 1374 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4029, 30, 393eqtr4d 2775 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍))
4119, 27, 40rspcedvdw 3594 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍))
421prjsprel 42585 . . . 4 (𝑋 𝑍 ↔ ((𝑋𝐵𝑍𝐵) ∧ ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍)))
4313, 17, 41, 42syl21anbrc 1345 . . 3 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑍)
448, 43rexlimddv 3141 . 2 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑋 𝑍)
454, 44rexlimddv 3141 1 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  cdif 3913  {csn 4591   class class class wbr 5109  {copab 5171  cfv 6513  (class class class)co 7389  Basecbs 17185  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408  Ringcrg 20148  LModclmod 20772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mgp 20056  df-ring 20150  df-lmod 20774
This theorem is referenced by:  prjsper  42589  0prjspn  42609
  Copyright terms: Public domain W3C validator