Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspertr Structured version   Visualization version   GIF version

Theorem prjspertr 39262
Description: The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspertr ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑍,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspertr
Dummy variables 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21prjsprel 39261 . . . 4 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
32simprbi 499 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
43ad2antrl 726 . 2 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5 simplrr 776 . . . 4 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑌 𝑍)
61prjsprel 39261 . . . . 5 (𝑌 𝑍 ↔ ((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)))
76simprbi 499 . . . 4 (𝑌 𝑍 → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
85, 7syl 17 . . 3 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
9 simplrl 775 . . . . . 6 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ ((𝑚𝐾𝑋 = (𝑚 · 𝑌)) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍)))) → 𝑋 𝑌)
109anassrs 470 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑌)
11 simpll 765 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
122, 11sylbi 219 . . . . 5 (𝑋 𝑌𝑋𝐵)
1310, 12syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋𝐵)
145adantr 483 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 𝑍)
15 simplr 767 . . . . . 6 (((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍𝐵)
166, 15sylbi 219 . . . . 5 (𝑌 𝑍𝑍𝐵)
1714, 16syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍𝐵)
18 prjspertr.s . . . . . . . 8 𝑆 = (Scalar‘𝑉)
1918lmodring 19644 . . . . . . 7 (𝑉 ∈ LMod → 𝑆 ∈ Ring)
2019ad3antrrr 728 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring)
21 simplrl 775 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑚𝐾)
22 simprl 769 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑛𝐾)
23 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
24 eqid 2823 . . . . . . 7 (.r𝑆) = (.r𝑆)
2523, 24ringcl 19313 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑚𝐾𝑛𝐾) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
2620, 21, 22, 25syl3anc 1367 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
27 oveq1 7165 . . . . . . 7 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r𝑆)𝑛) · 𝑍))
2827eqeq2d 2834 . . . . . 6 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
2928adantl 484 . . . . 5 (((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) ∧ 𝑜 = (𝑚(.r𝑆)𝑛)) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
30 simprr 771 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍))
3130oveq2d 7174 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍)))
32 simplrr 776 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌))
33 simplll 773 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod)
34 eldifi 4105 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑍 ∈ (Base‘𝑉))
35 prjspertr.b . . . . . . . . 9 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
3634, 35eleq2s 2933 . . . . . . . 8 (𝑍𝐵𝑍 ∈ (Base‘𝑉))
3717, 36syl 17 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉))
38 eqid 2823 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
39 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
4038, 18, 39, 23, 24lmodvsass 19661 . . . . . . 7 ((𝑉 ∈ LMod ∧ (𝑚𝐾𝑛𝐾𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4133, 21, 22, 37, 40syl13anc 1368 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4231, 32, 413eqtr4d 2868 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍))
4326, 29, 42rspcedvd 3628 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍))
441prjsprel 39261 . . . 4 (𝑋 𝑍 ↔ ((𝑋𝐵𝑍𝐵) ∧ ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍)))
4513, 17, 43, 44syl21anbrc 1340 . . 3 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑍)
468, 45rexlimddv 3293 . 2 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑋 𝑍)
474, 46rexlimddv 3293 1 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  cdif 3935  {csn 4569   class class class wbr 5068  {copab 5130  cfv 6357  (class class class)co 7158  Basecbs 16485  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  Ringcrg 19299  LModclmod 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mgp 19242  df-ring 19301  df-lmod 19638
This theorem is referenced by:  prjsper  39265  0prjspn  39277
  Copyright terms: Public domain W3C validator