Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspertr Structured version   Visualization version   GIF version

Theorem prjspertr 42592
Description: The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspertr ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑍,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspertr
Dummy variables 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21prjsprel 42591 . . . 4 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
32simprbi 496 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
43ad2antrl 728 . 2 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5 simplrr 778 . . . 4 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑌 𝑍)
61prjsprel 42591 . . . . 5 (𝑌 𝑍 ↔ ((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)))
76simprbi 496 . . . 4 (𝑌 𝑍 → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
85, 7syl 17 . . 3 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
9 simplrl 777 . . . . . 6 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ ((𝑚𝐾𝑋 = (𝑚 · 𝑌)) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍)))) → 𝑋 𝑌)
109anassrs 467 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑌)
11 simpll 767 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
122, 11sylbi 217 . . . . 5 (𝑋 𝑌𝑋𝐵)
1310, 12syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋𝐵)
145adantr 480 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 𝑍)
15 simplr 769 . . . . . 6 (((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍𝐵)
166, 15sylbi 217 . . . . 5 (𝑌 𝑍𝑍𝐵)
1714, 16syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍𝐵)
18 oveq1 7438 . . . . . 6 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r𝑆)𝑛) · 𝑍))
1918eqeq2d 2746 . . . . 5 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
20 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
21 eqid 2735 . . . . . 6 (.r𝑆) = (.r𝑆)
22 prjspertr.s . . . . . . . 8 𝑆 = (Scalar‘𝑉)
2322lmodring 20883 . . . . . . 7 (𝑉 ∈ LMod → 𝑆 ∈ Ring)
2423ad3antrrr 730 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring)
25 simplrl 777 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑚𝐾)
26 simprl 771 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑛𝐾)
2720, 21, 24, 25, 26ringcld 20277 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
28 simprr 773 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍))
2928oveq2d 7447 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍)))
30 simplrr 778 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌))
31 simplll 775 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod)
32 eldifi 4141 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑍 ∈ (Base‘𝑉))
33 prjspertr.b . . . . . . . . 9 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
3432, 33eleq2s 2857 . . . . . . . 8 (𝑍𝐵𝑍 ∈ (Base‘𝑉))
3517, 34syl 17 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉))
36 eqid 2735 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
37 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
3836, 22, 37, 20, 21lmodvsass 20902 . . . . . . 7 ((𝑉 ∈ LMod ∧ (𝑚𝐾𝑛𝐾𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
3931, 25, 26, 35, 38syl13anc 1371 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4029, 30, 393eqtr4d 2785 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍))
4119, 27, 40rspcedvdw 3625 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍))
421prjsprel 42591 . . . 4 (𝑋 𝑍 ↔ ((𝑋𝐵𝑍𝐵) ∧ ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍)))
4313, 17, 41, 42syl21anbrc 1343 . . 3 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑍)
448, 43rexlimddv 3159 . 2 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑋 𝑍)
454, 44rexlimddv 3159 1 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  cdif 3960  {csn 4631   class class class wbr 5148  {copab 5210  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Ringcrg 20251  LModclmod 20875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mgp 20153  df-ring 20253  df-lmod 20877
This theorem is referenced by:  prjsper  42595  0prjspn  42615
  Copyright terms: Public domain W3C validator