Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspertr Structured version   Visualization version   GIF version

Theorem prjspertr 40365
Description: The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspertr ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑍,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspertr
Dummy variables 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21prjsprel 40364 . . . 4 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
32simprbi 496 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
43ad2antrl 724 . 2 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5 simplrr 774 . . . 4 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑌 𝑍)
61prjsprel 40364 . . . . 5 (𝑌 𝑍 ↔ ((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)))
76simprbi 496 . . . 4 (𝑌 𝑍 → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
85, 7syl 17 . . 3 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
9 simplrl 773 . . . . . 6 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ ((𝑚𝐾𝑋 = (𝑚 · 𝑌)) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍)))) → 𝑋 𝑌)
109anassrs 467 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑌)
11 simpll 763 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
122, 11sylbi 216 . . . . 5 (𝑋 𝑌𝑋𝐵)
1310, 12syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋𝐵)
145adantr 480 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 𝑍)
15 simplr 765 . . . . . 6 (((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍𝐵)
166, 15sylbi 216 . . . . 5 (𝑌 𝑍𝑍𝐵)
1714, 16syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍𝐵)
18 prjspertr.s . . . . . . . 8 𝑆 = (Scalar‘𝑉)
1918lmodring 20046 . . . . . . 7 (𝑉 ∈ LMod → 𝑆 ∈ Ring)
2019ad3antrrr 726 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring)
21 simplrl 773 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑚𝐾)
22 simprl 767 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑛𝐾)
23 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
24 eqid 2738 . . . . . . 7 (.r𝑆) = (.r𝑆)
2523, 24ringcl 19715 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑚𝐾𝑛𝐾) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
2620, 21, 22, 25syl3anc 1369 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
27 oveq1 7262 . . . . . . 7 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r𝑆)𝑛) · 𝑍))
2827eqeq2d 2749 . . . . . 6 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
2928adantl 481 . . . . 5 (((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) ∧ 𝑜 = (𝑚(.r𝑆)𝑛)) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
30 simprr 769 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍))
3130oveq2d 7271 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍)))
32 simplrr 774 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌))
33 simplll 771 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod)
34 eldifi 4057 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑍 ∈ (Base‘𝑉))
35 prjspertr.b . . . . . . . . 9 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
3634, 35eleq2s 2857 . . . . . . . 8 (𝑍𝐵𝑍 ∈ (Base‘𝑉))
3717, 36syl 17 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉))
38 eqid 2738 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
39 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
4038, 18, 39, 23, 24lmodvsass 20063 . . . . . . 7 ((𝑉 ∈ LMod ∧ (𝑚𝐾𝑛𝐾𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4133, 21, 22, 37, 40syl13anc 1370 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4231, 32, 413eqtr4d 2788 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍))
4326, 29, 42rspcedvd 3555 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍))
441prjsprel 40364 . . . 4 (𝑋 𝑍 ↔ ((𝑋𝐵𝑍𝐵) ∧ ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍)))
4513, 17, 43, 44syl21anbrc 1342 . . 3 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑍)
468, 45rexlimddv 3219 . 2 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑋 𝑍)
474, 46rexlimddv 3219 1 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  {csn 4558   class class class wbr 5070  {copab 5132  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Ringcrg 19698  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mgp 19636  df-ring 19700  df-lmod 20040
This theorem is referenced by:  prjsper  40368  0prjspn  40386
  Copyright terms: Public domain W3C validator