Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspertr Structured version   Visualization version   GIF version

Theorem prjspertr 41344
Description: The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspertr ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑍,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspertr
Dummy variables 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjsprel.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21prjsprel 41343 . . . 4 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
32simprbi 498 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
43ad2antrl 727 . 2 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5 simplrr 777 . . . 4 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑌 𝑍)
61prjsprel 41343 . . . . 5 (𝑌 𝑍 ↔ ((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)))
76simprbi 498 . . . 4 (𝑌 𝑍 → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
85, 7syl 17 . . 3 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍))
9 simplrl 776 . . . . . 6 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ ((𝑚𝐾𝑋 = (𝑚 · 𝑌)) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍)))) → 𝑋 𝑌)
109anassrs 469 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑌)
11 simpll 766 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
122, 11sylbi 216 . . . . 5 (𝑋 𝑌𝑋𝐵)
1310, 12syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋𝐵)
145adantr 482 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 𝑍)
15 simplr 768 . . . . . 6 (((𝑌𝐵𝑍𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑍)) → 𝑍𝐵)
166, 15sylbi 216 . . . . 5 (𝑌 𝑍𝑍𝐵)
1714, 16syl 17 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍𝐵)
18 prjspertr.s . . . . . . . 8 𝑆 = (Scalar‘𝑉)
1918lmodring 20472 . . . . . . 7 (𝑉 ∈ LMod → 𝑆 ∈ Ring)
2019ad3antrrr 729 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑆 ∈ Ring)
21 simplrl 776 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑚𝐾)
22 simprl 770 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑛𝐾)
23 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
24 eqid 2733 . . . . . . 7 (.r𝑆) = (.r𝑆)
2523, 24ringcl 20067 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑚𝐾𝑛𝐾) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
2620, 21, 22, 25syl3anc 1372 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚(.r𝑆)𝑛) ∈ 𝐾)
27 oveq1 7413 . . . . . . 7 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑜 · 𝑍) = ((𝑚(.r𝑆)𝑛) · 𝑍))
2827eqeq2d 2744 . . . . . 6 (𝑜 = (𝑚(.r𝑆)𝑛) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
2928adantl 483 . . . . 5 (((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) ∧ 𝑜 = (𝑚(.r𝑆)𝑛)) → (𝑋 = (𝑜 · 𝑍) ↔ 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍)))
30 simprr 772 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑌 = (𝑛 · 𝑍))
3130oveq2d 7422 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → (𝑚 · 𝑌) = (𝑚 · (𝑛 · 𝑍)))
32 simplrr 777 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = (𝑚 · 𝑌))
33 simplll 774 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑉 ∈ LMod)
34 eldifi 4126 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑍 ∈ (Base‘𝑉))
35 prjspertr.b . . . . . . . . 9 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
3634, 35eleq2s 2852 . . . . . . . 8 (𝑍𝐵𝑍 ∈ (Base‘𝑉))
3717, 36syl 17 . . . . . . 7 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑍 ∈ (Base‘𝑉))
38 eqid 2733 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
39 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
4038, 18, 39, 23, 24lmodvsass 20490 . . . . . . 7 ((𝑉 ∈ LMod ∧ (𝑚𝐾𝑛𝐾𝑍 ∈ (Base‘𝑉))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4133, 21, 22, 37, 40syl13anc 1373 . . . . . 6 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ((𝑚(.r𝑆)𝑛) · 𝑍) = (𝑚 · (𝑛 · 𝑍)))
4231, 32, 413eqtr4d 2783 . . . . 5 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 = ((𝑚(.r𝑆)𝑛) · 𝑍))
4326, 29, 42rspcedvd 3615 . . . 4 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍))
441prjsprel 41343 . . . 4 (𝑋 𝑍 ↔ ((𝑋𝐵𝑍𝐵) ∧ ∃𝑜𝐾 𝑋 = (𝑜 · 𝑍)))
4513, 17, 43, 44syl21anbrc 1345 . . 3 ((((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) ∧ (𝑛𝐾𝑌 = (𝑛 · 𝑍))) → 𝑋 𝑍)
468, 45rexlimddv 3162 . 2 (((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) ∧ (𝑚𝐾𝑋 = (𝑚 · 𝑌))) → 𝑋 𝑍)
474, 46rexlimddv 3162 1 ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  cdif 3945  {csn 4628   class class class wbr 5148  {copab 5210  cfv 6541  (class class class)co 7406  Basecbs 17141  .rcmulr 17195  Scalarcsca 17197   ·𝑠 cvsca 17198  0gc0g 17382  Ringcrg 20050  LModclmod 20464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-plusg 17207  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mgp 19983  df-ring 20052  df-lmod 20466
This theorem is referenced by:  prjsper  41347  0prjspn  41367
  Copyright terms: Public domain W3C validator