Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspnrel Structured version   Visualization version   GIF version

Theorem 0prjspnrel 42582
Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
0prjspnrel.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
0prjspnrel.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
0prjspnrel.x · = ( ·𝑠𝑊)
0prjspnrel.s 𝑆 = (Base‘𝐾)
0prjspnrel.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspnrel.1 1 = ((𝐾 unitVec (0...0))‘0)
Assertion
Ref Expression
0prjspnrel ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑥, 1 ,𝑦,𝑙   𝑥,𝑆,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑊(𝑥,𝑦,𝑙)

Proof of Theorem 0prjspnrel
Dummy variables 𝑚 𝑛 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋𝐵)
2 0prjspnrel.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
3 0prjspnrel.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspnrel.1 . . . 4 1 = ((𝐾 unitVec (0...0))‘0)
52, 3, 40prjspnlem 42578 . . 3 (𝐾 ∈ DivRing → 1𝐵)
65adantr 480 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 1𝐵)
7 sneq 4658 . . . . . 6 (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)})
87xpeq2d 5730 . . . . 5 (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)}))
98eqeq2d 2751 . . . 4 (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
10 ovexd 7483 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (0...0) ∈ V)
11 difss 4159 . . . . . . . . 9 ((Base‘𝑊) ∖ {(0g𝑊)}) ⊆ (Base‘𝑊)
122, 11eqsstri 4043 . . . . . . . 8 𝐵 ⊆ (Base‘𝑊)
1312sseli 4004 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑊))
1413adantl 481 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘𝑊))
15 eqid 2740 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2740 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
173, 15, 16frlmbasf 21803 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...0)⟶(Base‘𝐾))
1810, 14, 17syl2anc 583 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋:(0...0)⟶(Base‘𝐾))
19 c0ex 11284 . . . . . . . 8 0 ∈ V
2019snid 4684 . . . . . . 7 0 ∈ {0}
21 fz0sn 13684 . . . . . . 7 (0...0) = {0}
2220, 21eleqtrri 2843 . . . . . 6 0 ∈ (0...0)
2322a1i 11 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 0 ∈ (0...0))
2418, 23ffvelcdmd 7119 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (𝑋‘0) ∈ (Base‘𝐾))
253, 15, 16frlmbasmap 21802 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
2610, 14, 25syl2anc 583 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
27 fvex 6933 . . . . . 6 (Base‘𝐾) ∈ V
2821, 27, 19mapsnconst 8950 . . . . 5 (𝑋 ∈ ((Base‘𝐾) ↑m (0...0)) → 𝑋 = ((0...0) × {(𝑋‘0)}))
2926, 28syl 17 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)}))
309, 24, 29rspcedvdw 3638 . . 3 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛}))
31 oveq1 7455 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 ))
3231eqeq2d 2751 . . . 4 (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
33 simprl 770 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾))
34 0prjspnrel.s . . . . 5 𝑆 = (Base‘𝐾)
3533, 34eleqtrrdi 2855 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛𝑆)
36 ovexd 7483 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V)
37 simpr 484 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾))
385ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1𝐵)
3912, 38sselid 4006 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊))
40 0prjspnrel.x . . . . . . . . 9 · = ( ·𝑠𝑊)
41 eqid 2740 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
423, 16, 15, 36, 37, 39, 40, 41frlmvscafval 21809 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ))
433, 15, 16frlmbasf 21803 . . . . . . . . . . 11 (((0...0) ∈ V ∧ 1 ∈ (Base‘𝑊)) → 1 :(0...0)⟶(Base‘𝐾))
4436, 39, 43syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶(Base‘𝐾))
45 drngring 20758 . . . . . . . . . . . . . 14 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
46 eqid 2740 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
4715, 46ringidcl 20289 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → (1r𝐾) ∈ (Base‘𝐾))
4948ad2antrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r𝐾) ∈ (Base‘𝐾))
5049snssd 4834 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r𝐾)} ⊆ (Base‘𝐾))
514a1i 11 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec (0...0))‘0))
52 elfz1eq 13595 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 𝑑 = 0)
5351, 52fveq12d 6927 . . . . . . . . . . . . . 14 (𝑑 ∈ (0...0) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
5453adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
55 eqid 2740 . . . . . . . . . . . . . . 15 (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0))
56 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing)
57 ovexd 7483 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈ V)
5822a1i 11 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈ (0...0))
5955, 56, 57, 58, 46uvcvv1 21832 . . . . . . . . . . . . . 14 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
60 fvex 6933 . . . . . . . . . . . . . . 15 (((𝐾 unitVec (0...0))‘0)‘0) ∈ V
6160elsn 4663 . . . . . . . . . . . . . 14 ((((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
6259, 61sylibr 234 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)})
6354, 62eqeltrd 2844 . . . . . . . . . . . 12 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) ∈ {(1r𝐾)})
6463ralrimiva 3152 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)})
65 fcdmssb 7156 . . . . . . . . . . 11 (({(1r𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)}) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6650, 64, 65syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6744, 66mpbid 232 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶{(1r𝐾)})
68 vex 3492 . . . . . . . . . 10 𝑛 ∈ V
6968a1i 11 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V)
70 elsni 4665 . . . . . . . . . . 11 (𝑐 ∈ {(1r𝐾)} → 𝑐 = (1r𝐾))
7170oveq2d 7464 . . . . . . . . . 10 (𝑐 ∈ {(1r𝐾)} → (𝑛(.r𝐾)𝑐) = (𝑛(.r𝐾)(1r𝐾)))
7245ad2antrr 725 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
7315, 41, 46, 72, 37ringridmd 20296 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7471, 73sylan9eqr 2802 . . . . . . . . 9 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r𝐾)}) → (𝑛(.r𝐾)𝑐) = 𝑛)
7536, 67, 69, 69, 74caofid2 7749 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ) = ((0...0) × {𝑛}))
7642, 75eqtrd 2780 . . . . . . 7 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) × {𝑛}))
7776eqeq2d 2751 . . . . . 6 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛})))
7877biimprd 248 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 )))
7978impr 454 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 ))
8032, 35, 79rspcedvdw 3638 . . 3 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
8130, 80rexlimddv 3167 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
82 0prjspnrel.e . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
8382prjsprel 42559 . 2 (𝑋 1 ↔ ((𝑋𝐵1𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 1 )))
841, 6, 81, 83syl21anbrc 1344 1 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  {copab 5228   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  0cc0 11184  ...cfz 13567  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499  1rcur 20208  Ringcrg 20260  DivRingcdr 20751   freeLMod cfrlm 21789   unitVec cuvc 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826
This theorem is referenced by:  0prjspn  42583
  Copyright terms: Public domain W3C validator