Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspnrel Structured version   Visualization version   GIF version

Theorem 0prjspnrel 42639
Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
0prjspnrel.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
0prjspnrel.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
0prjspnrel.x · = ( ·𝑠𝑊)
0prjspnrel.s 𝑆 = (Base‘𝐾)
0prjspnrel.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspnrel.1 1 = ((𝐾 unitVec (0...0))‘0)
Assertion
Ref Expression
0prjspnrel ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑥, 1 ,𝑦,𝑙   𝑥,𝑆,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑊(𝑥,𝑦,𝑙)

Proof of Theorem 0prjspnrel
Dummy variables 𝑚 𝑛 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋𝐵)
2 0prjspnrel.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
3 0prjspnrel.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspnrel.1 . . . 4 1 = ((𝐾 unitVec (0...0))‘0)
52, 3, 40prjspnlem 42635 . . 3 (𝐾 ∈ DivRing → 1𝐵)
65adantr 480 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 1𝐵)
7 sneq 4584 . . . . . 6 (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)})
87xpeq2d 5644 . . . . 5 (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)}))
98eqeq2d 2741 . . . 4 (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
10 ovexd 7376 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (0...0) ∈ V)
11 difss 4084 . . . . . . . . 9 ((Base‘𝑊) ∖ {(0g𝑊)}) ⊆ (Base‘𝑊)
122, 11eqsstri 3979 . . . . . . . 8 𝐵 ⊆ (Base‘𝑊)
1312sseli 3928 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑊))
1413adantl 481 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘𝑊))
15 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
173, 15, 16frlmbasf 21690 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...0)⟶(Base‘𝐾))
1810, 14, 17syl2anc 584 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋:(0...0)⟶(Base‘𝐾))
19 c0ex 11098 . . . . . . . 8 0 ∈ V
2019snid 4613 . . . . . . 7 0 ∈ {0}
21 fz0sn 13519 . . . . . . 7 (0...0) = {0}
2220, 21eleqtrri 2828 . . . . . 6 0 ∈ (0...0)
2322a1i 11 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 0 ∈ (0...0))
2418, 23ffvelcdmd 7013 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (𝑋‘0) ∈ (Base‘𝐾))
253, 15, 16frlmbasmap 21689 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
2610, 14, 25syl2anc 584 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
27 fvex 6830 . . . . . 6 (Base‘𝐾) ∈ V
2821, 27, 19mapsnconst 8811 . . . . 5 (𝑋 ∈ ((Base‘𝐾) ↑m (0...0)) → 𝑋 = ((0...0) × {(𝑋‘0)}))
2926, 28syl 17 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)}))
309, 24, 29rspcedvdw 3578 . . 3 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛}))
31 oveq1 7348 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 ))
3231eqeq2d 2741 . . . 4 (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
33 simprl 770 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾))
34 0prjspnrel.s . . . . 5 𝑆 = (Base‘𝐾)
3533, 34eleqtrrdi 2840 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛𝑆)
36 ovexd 7376 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V)
37 simpr 484 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾))
385ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1𝐵)
3912, 38sselid 3930 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊))
40 0prjspnrel.x . . . . . . . . 9 · = ( ·𝑠𝑊)
41 eqid 2730 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
423, 16, 15, 36, 37, 39, 40, 41frlmvscafval 21696 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ))
433, 15, 16frlmbasf 21690 . . . . . . . . . . 11 (((0...0) ∈ V ∧ 1 ∈ (Base‘𝑊)) → 1 :(0...0)⟶(Base‘𝐾))
4436, 39, 43syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶(Base‘𝐾))
45 drngring 20644 . . . . . . . . . . . . . 14 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
46 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
4715, 46ringidcl 20176 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → (1r𝐾) ∈ (Base‘𝐾))
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r𝐾) ∈ (Base‘𝐾))
5049snssd 4759 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r𝐾)} ⊆ (Base‘𝐾))
514a1i 11 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec (0...0))‘0))
52 elfz1eq 13427 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 𝑑 = 0)
5351, 52fveq12d 6824 . . . . . . . . . . . . . 14 (𝑑 ∈ (0...0) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
5453adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
55 eqid 2730 . . . . . . . . . . . . . . 15 (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0))
56 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing)
57 ovexd 7376 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈ V)
5822a1i 11 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈ (0...0))
5955, 56, 57, 58, 46uvcvv1 21719 . . . . . . . . . . . . . 14 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
60 fvex 6830 . . . . . . . . . . . . . . 15 (((𝐾 unitVec (0...0))‘0)‘0) ∈ V
6160elsn 4589 . . . . . . . . . . . . . 14 ((((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
6259, 61sylibr 234 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)})
6354, 62eqeltrd 2829 . . . . . . . . . . . 12 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) ∈ {(1r𝐾)})
6463ralrimiva 3122 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)})
65 fcdmssb 7050 . . . . . . . . . . 11 (({(1r𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)}) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6650, 64, 65syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6744, 66mpbid 232 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶{(1r𝐾)})
68 vex 3438 . . . . . . . . . 10 𝑛 ∈ V
6968a1i 11 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V)
70 elsni 4591 . . . . . . . . . . 11 (𝑐 ∈ {(1r𝐾)} → 𝑐 = (1r𝐾))
7170oveq2d 7357 . . . . . . . . . 10 (𝑐 ∈ {(1r𝐾)} → (𝑛(.r𝐾)𝑐) = (𝑛(.r𝐾)(1r𝐾)))
7245ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
7315, 41, 46, 72, 37ringridmd 20184 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7471, 73sylan9eqr 2787 . . . . . . . . 9 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r𝐾)}) → (𝑛(.r𝐾)𝑐) = 𝑛)
7536, 67, 69, 69, 74caofid2 7641 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ) = ((0...0) × {𝑛}))
7642, 75eqtrd 2765 . . . . . . 7 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) × {𝑛}))
7776eqeq2d 2741 . . . . . 6 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛})))
7877biimprd 248 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 )))
7978impr 454 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 ))
8032, 35, 79rspcedvdw 3578 . . 3 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
8130, 80rexlimddv 3137 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
82 0prjspnrel.e . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
8382prjsprel 42616 . 2 (𝑋 1 ↔ ((𝑋𝐵1𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 1 )))
841, 6, 81, 83syl21anbrc 1345 1 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  cdif 3897  wss 3900  {csn 4574   class class class wbr 5089  {copab 5151   × cxp 5612  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  m cmap 8745  0cc0 10998  ...cfz 13399  Basecbs 17112  .rcmulr 17154   ·𝑠 cvsca 17157  0gc0g 17335  1rcur 20092  Ringcrg 20144  DivRingcdr 20637   freeLMod cfrlm 21676   unitVec cuvc 21712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-prds 17343  df-pws 17345  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-nzr 20421  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-uvc 21713
This theorem is referenced by:  0prjspn  42640
  Copyright terms: Public domain W3C validator