Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspnrel Structured version   Visualization version   GIF version

Theorem 0prjspnrel 40082
Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
0prjspnrel.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
0prjspnrel.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
0prjspnrel.x · = ( ·𝑠𝑊)
0prjspnrel.s 𝑆 = (Base‘𝐾)
0prjspnrel.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspnrel.1 1 = ((𝐾 unitVec (0...0))‘0)
Assertion
Ref Expression
0prjspnrel ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑥, 1 ,𝑦,𝑙   𝑥,𝑆,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑊(𝑥,𝑦,𝑙)

Proof of Theorem 0prjspnrel
Dummy variables 𝑚 𝑛 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋𝐵)
2 0prjspnrel.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
3 0prjspnrel.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspnrel.1 . . . 4 1 = ((𝐾 unitVec (0...0))‘0)
52, 3, 40prjspnlem 40078 . . 3 (𝐾 ∈ DivRing → 1𝐵)
65adantr 484 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 1𝐵)
7 ovexd 7218 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (0...0) ∈ V)
8 difss 4032 . . . . . . . . 9 ((Base‘𝑊) ∖ {(0g𝑊)}) ⊆ (Base‘𝑊)
92, 8eqsstri 3921 . . . . . . . 8 𝐵 ⊆ (Base‘𝑊)
109sseli 3883 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑊))
1110adantl 485 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘𝑊))
12 eqid 2739 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2739 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
143, 12, 13frlmbasf 20589 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...0)⟶(Base‘𝐾))
157, 11, 14syl2anc 587 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋:(0...0)⟶(Base‘𝐾))
16 c0ex 10726 . . . . . . . 8 0 ∈ V
1716snid 4562 . . . . . . 7 0 ∈ {0}
18 fz0sn 13111 . . . . . . 7 (0...0) = {0}
1917, 18eleqtrri 2833 . . . . . 6 0 ∈ (0...0)
2019a1i 11 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 0 ∈ (0...0))
2115, 20ffvelrnd 6875 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (𝑋‘0) ∈ (Base‘𝐾))
22 sneq 4536 . . . . . . 7 (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)})
2322xpeq2d 5565 . . . . . 6 (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)}))
2423eqeq2d 2750 . . . . 5 (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
2524adantl 485 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 = (𝑋‘0)) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
263, 12, 13frlmbasmap 20588 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
277, 11, 26syl2anc 587 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
28 fvex 6700 . . . . . 6 (Base‘𝐾) ∈ V
2918, 28, 16mapsnconst 8515 . . . . 5 (𝑋 ∈ ((Base‘𝐾) ↑m (0...0)) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3027, 29syl 17 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3121, 25, 30rspcedvd 3532 . . 3 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛}))
32 simprl 771 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾))
33 0prjspnrel.s . . . . 5 𝑆 = (Base‘𝐾)
3432, 33eleqtrrdi 2845 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛𝑆)
35 oveq1 7190 . . . . . 6 (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 ))
3635eqeq2d 2750 . . . . 5 (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
3736adantl 485 . . . 4 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) ∧ 𝑚 = 𝑛) → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
38 ovexd 7218 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V)
39 simpr 488 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾))
405ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1𝐵)
419, 40sseldi 3885 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊))
42 0prjspnrel.x . . . . . . . . 9 · = ( ·𝑠𝑊)
43 eqid 2739 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
443, 13, 12, 38, 39, 41, 42, 43frlmvscafval 20595 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ))
453, 12, 13frlmbasf 20589 . . . . . . . . . . 11 (((0...0) ∈ V ∧ 1 ∈ (Base‘𝑊)) → 1 :(0...0)⟶(Base‘𝐾))
4638, 41, 45syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶(Base‘𝐾))
47 drngring 19641 . . . . . . . . . . . . . 14 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
48 eqid 2739 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
4912, 48ringidcl 19453 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
5047, 49syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → (1r𝐾) ∈ (Base‘𝐾))
5150ad2antrr 726 . . . . . . . . . . . 12 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r𝐾) ∈ (Base‘𝐾))
5251snssd 4707 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r𝐾)} ⊆ (Base‘𝐾))
534a1i 11 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec (0...0))‘0))
54 elfz1eq 13022 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 𝑑 = 0)
5553, 54fveq12d 6694 . . . . . . . . . . . . . 14 (𝑑 ∈ (0...0) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
5655adantl 485 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
57 eqid 2739 . . . . . . . . . . . . . . 15 (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0))
58 simplll 775 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing)
59 ovexd 7218 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈ V)
6019a1i 11 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈ (0...0))
6157, 58, 59, 60, 48uvcvv1 20618 . . . . . . . . . . . . . 14 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
62 fvex 6700 . . . . . . . . . . . . . . 15 (((𝐾 unitVec (0...0))‘0)‘0) ∈ V
6362elsn 4541 . . . . . . . . . . . . . 14 ((((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
6461, 63sylibr 237 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)})
6556, 64eqeltrd 2834 . . . . . . . . . . . 12 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) ∈ {(1r𝐾)})
6665ralrimiva 3097 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)})
67 frnssb 6908 . . . . . . . . . . 11 (({(1r𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)}) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6852, 66, 67syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6946, 68mpbid 235 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶{(1r𝐾)})
70 vex 3404 . . . . . . . . . 10 𝑛 ∈ V
7170a1i 11 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V)
72 elsni 4543 . . . . . . . . . . 11 (𝑐 ∈ {(1r𝐾)} → 𝑐 = (1r𝐾))
7372oveq2d 7199 . . . . . . . . . 10 (𝑐 ∈ {(1r𝐾)} → (𝑛(.r𝐾)𝑐) = (𝑛(.r𝐾)(1r𝐾)))
7447ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
7512, 43, 48ringridm 19457 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7674, 39, 75syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7773, 76sylan9eqr 2796 . . . . . . . . 9 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r𝐾)}) → (𝑛(.r𝐾)𝑐) = 𝑛)
7838, 69, 71, 71, 77caofid2 7471 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ) = ((0...0) × {𝑛}))
7944, 78eqtrd 2774 . . . . . . 7 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) × {𝑛}))
8079eqeq2d 2750 . . . . . 6 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛})))
8180biimprd 251 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 )))
8281impr 458 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 ))
8334, 37, 82rspcedvd 3532 . . 3 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
8431, 83rexlimddv 3202 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
85 0prjspnrel.e . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
8685prjsprel 40061 . 2 (𝑋 1 ↔ ((𝑋𝐵1𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 1 )))
871, 6, 84, 86syl21anbrc 1345 1 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wrex 3055  Vcvv 3400  cdif 3850  wss 3853  {csn 4526   class class class wbr 5040  {copab 5102   × cxp 5533  wf 6346  cfv 6350  (class class class)co 7183  f cof 7436  m cmap 8450  0cc0 10628  ...cfz 12994  Basecbs 16599  .rcmulr 16682   ·𝑠 cvsca 16685  0gc0g 16829  1rcur 19383  Ringcrg 19429  DivRingcdr 19634   freeLMod cfrlm 20575   unitVec cuvc 20611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-of 7438  df-om 7613  df-1st 7727  df-2nd 7728  df-supp 7870  df-tpos 7934  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-ixp 8521  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-fsupp 8920  df-sup 8992  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-fz 12995  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-ress 16607  df-plusg 16694  df-mulr 16695  df-sca 16697  df-vsca 16698  df-ip 16699  df-tset 16700  df-ple 16701  df-ds 16703  df-hom 16705  df-cco 16706  df-0g 16831  df-prds 16837  df-pws 16839  df-mgm 17981  df-sgrp 18030  df-mnd 18041  df-grp 18235  df-minusg 18236  df-sbg 18237  df-subg 18407  df-mgp 19372  df-ur 19384  df-ring 19431  df-oppr 19508  df-dvdsr 19526  df-unit 19527  df-drng 19636  df-subrg 19665  df-lmod 19768  df-lss 19836  df-sra 20076  df-rgmod 20077  df-nzr 20163  df-dsmm 20561  df-frlm 20576  df-uvc 20612
This theorem is referenced by:  0prjspn  40083
  Copyright terms: Public domain W3C validator