Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspnrel Structured version   Visualization version   GIF version

Theorem 0prjspnrel 40385
Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
0prjspnrel.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
0prjspnrel.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
0prjspnrel.x · = ( ·𝑠𝑊)
0prjspnrel.s 𝑆 = (Base‘𝐾)
0prjspnrel.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspnrel.1 1 = ((𝐾 unitVec (0...0))‘0)
Assertion
Ref Expression
0prjspnrel ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑥, 1 ,𝑦,𝑙   𝑥,𝑆,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑊(𝑥,𝑦,𝑙)

Proof of Theorem 0prjspnrel
Dummy variables 𝑚 𝑛 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋𝐵)
2 0prjspnrel.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
3 0prjspnrel.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspnrel.1 . . . 4 1 = ((𝐾 unitVec (0...0))‘0)
52, 3, 40prjspnlem 40381 . . 3 (𝐾 ∈ DivRing → 1𝐵)
65adantr 480 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 1𝐵)
7 ovexd 7290 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (0...0) ∈ V)
8 difss 4062 . . . . . . . . 9 ((Base‘𝑊) ∖ {(0g𝑊)}) ⊆ (Base‘𝑊)
92, 8eqsstri 3951 . . . . . . . 8 𝐵 ⊆ (Base‘𝑊)
109sseli 3913 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑊))
1110adantl 481 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘𝑊))
12 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
143, 12, 13frlmbasf 20877 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...0)⟶(Base‘𝐾))
157, 11, 14syl2anc 583 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋:(0...0)⟶(Base‘𝐾))
16 c0ex 10900 . . . . . . . 8 0 ∈ V
1716snid 4594 . . . . . . 7 0 ∈ {0}
18 fz0sn 13285 . . . . . . 7 (0...0) = {0}
1917, 18eleqtrri 2838 . . . . . 6 0 ∈ (0...0)
2019a1i 11 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 0 ∈ (0...0))
2115, 20ffvelrnd 6944 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (𝑋‘0) ∈ (Base‘𝐾))
22 sneq 4568 . . . . . . 7 (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)})
2322xpeq2d 5610 . . . . . 6 (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)}))
2423eqeq2d 2749 . . . . 5 (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
2524adantl 481 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 = (𝑋‘0)) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
263, 12, 13frlmbasmap 20876 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
277, 11, 26syl2anc 583 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
28 fvex 6769 . . . . . 6 (Base‘𝐾) ∈ V
2918, 28, 16mapsnconst 8638 . . . . 5 (𝑋 ∈ ((Base‘𝐾) ↑m (0...0)) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3027, 29syl 17 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3121, 25, 30rspcedvd 3555 . . 3 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛}))
32 simprl 767 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾))
33 0prjspnrel.s . . . . 5 𝑆 = (Base‘𝐾)
3432, 33eleqtrrdi 2850 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛𝑆)
35 oveq1 7262 . . . . . 6 (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 ))
3635eqeq2d 2749 . . . . 5 (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
3736adantl 481 . . . 4 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) ∧ 𝑚 = 𝑛) → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
38 ovexd 7290 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V)
39 simpr 484 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾))
405ad2antrr 722 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1𝐵)
419, 40sselid 3915 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊))
42 0prjspnrel.x . . . . . . . . 9 · = ( ·𝑠𝑊)
43 eqid 2738 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
443, 13, 12, 38, 39, 41, 42, 43frlmvscafval 20883 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ))
453, 12, 13frlmbasf 20877 . . . . . . . . . . 11 (((0...0) ∈ V ∧ 1 ∈ (Base‘𝑊)) → 1 :(0...0)⟶(Base‘𝐾))
4638, 41, 45syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶(Base‘𝐾))
47 drngring 19913 . . . . . . . . . . . . . 14 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
48 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
4912, 48ringidcl 19722 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
5047, 49syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → (1r𝐾) ∈ (Base‘𝐾))
5150ad2antrr 722 . . . . . . . . . . . 12 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r𝐾) ∈ (Base‘𝐾))
5251snssd 4739 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r𝐾)} ⊆ (Base‘𝐾))
534a1i 11 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec (0...0))‘0))
54 elfz1eq 13196 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 𝑑 = 0)
5553, 54fveq12d 6763 . . . . . . . . . . . . . 14 (𝑑 ∈ (0...0) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
5655adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
57 eqid 2738 . . . . . . . . . . . . . . 15 (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0))
58 simplll 771 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing)
59 ovexd 7290 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈ V)
6019a1i 11 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈ (0...0))
6157, 58, 59, 60, 48uvcvv1 20906 . . . . . . . . . . . . . 14 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
62 fvex 6769 . . . . . . . . . . . . . . 15 (((𝐾 unitVec (0...0))‘0)‘0) ∈ V
6362elsn 4573 . . . . . . . . . . . . . 14 ((((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
6461, 63sylibr 233 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)})
6556, 64eqeltrd 2839 . . . . . . . . . . . 12 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) ∈ {(1r𝐾)})
6665ralrimiva 3107 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)})
67 frnssb 6977 . . . . . . . . . . 11 (({(1r𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)}) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6852, 66, 67syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6946, 68mpbid 231 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶{(1r𝐾)})
70 vex 3426 . . . . . . . . . 10 𝑛 ∈ V
7170a1i 11 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V)
72 elsni 4575 . . . . . . . . . . 11 (𝑐 ∈ {(1r𝐾)} → 𝑐 = (1r𝐾))
7372oveq2d 7271 . . . . . . . . . 10 (𝑐 ∈ {(1r𝐾)} → (𝑛(.r𝐾)𝑐) = (𝑛(.r𝐾)(1r𝐾)))
7447ad2antrr 722 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
7512, 43, 48ringridm 19726 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7674, 39, 75syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7773, 76sylan9eqr 2801 . . . . . . . . 9 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r𝐾)}) → (𝑛(.r𝐾)𝑐) = 𝑛)
7838, 69, 71, 71, 77caofid2 7545 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ) = ((0...0) × {𝑛}))
7944, 78eqtrd 2778 . . . . . . 7 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) × {𝑛}))
8079eqeq2d 2749 . . . . . 6 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛})))
8180biimprd 247 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 )))
8281impr 454 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 ))
8334, 37, 82rspcedvd 3555 . . 3 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
8431, 83rexlimddv 3219 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
85 0prjspnrel.e . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
8685prjsprel 40364 . 2 (𝑋 1 ↔ ((𝑋𝐵1𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 1 )))
871, 6, 84, 86syl21anbrc 1342 1 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  {copab 5132   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  0cc0 10802  ...cfz 13168  Basecbs 16840  .rcmulr 16889   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  Ringcrg 19698  DivRingcdr 19906   freeLMod cfrlm 20863   unitVec cuvc 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-dsmm 20849  df-frlm 20864  df-uvc 20900
This theorem is referenced by:  0prjspn  40386
  Copyright terms: Public domain W3C validator