Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. 2
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
2 | | 0prjspnrel.b |
. . . 4
⊢ 𝐵 = ((Base‘𝑊) ∖
{(0g‘𝑊)}) |
3 | | 0prjspnrel.w |
. . . 4
⊢ 𝑊 = (𝐾 freeLMod (0...0)) |
4 | | 0prjspnrel.1 |
. . . 4
⊢ 1 = ((𝐾 unitVec
(0...0))‘0) |
5 | 2, 3, 4 | 0prjspnlem 42578 |
. . 3
⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
6 | 5 | adantr 480 |
. 2
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
7 | | sneq 4658 |
. . . . . 6
⊢ (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)}) |
8 | 7 | xpeq2d 5730 |
. . . . 5
⊢ (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)})) |
9 | 8 | eqeq2d 2751 |
. . . 4
⊢ (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)}))) |
10 | | ovexd 7483 |
. . . . . 6
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → (0...0) ∈ V) |
11 | | difss 4159 |
. . . . . . . . 9
⊢
((Base‘𝑊)
∖ {(0g‘𝑊)}) ⊆ (Base‘𝑊) |
12 | 2, 11 | eqsstri 4043 |
. . . . . . . 8
⊢ 𝐵 ⊆ (Base‘𝑊) |
13 | 12 | sseli 4004 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑊)) |
14 | 13 | adantl 481 |
. . . . . 6
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑊)) |
15 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
17 | 3, 15, 16 | frlmbasf 21803 |
. . . . . 6
⊢ (((0...0)
∈ V ∧ 𝑋 ∈
(Base‘𝑊)) →
𝑋:(0...0)⟶(Base‘𝐾)) |
18 | 10, 14, 17 | syl2anc 583 |
. . . . 5
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋:(0...0)⟶(Base‘𝐾)) |
19 | | c0ex 11284 |
. . . . . . . 8
⊢ 0 ∈
V |
20 | 19 | snid 4684 |
. . . . . . 7
⊢ 0 ∈
{0} |
21 | | fz0sn 13684 |
. . . . . . 7
⊢ (0...0) =
{0} |
22 | 20, 21 | eleqtrri 2843 |
. . . . . 6
⊢ 0 ∈
(0...0) |
23 | 22 | a1i 11 |
. . . . 5
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 0 ∈ (0...0)) |
24 | 18, 23 | ffvelcdmd 7119 |
. . . 4
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → (𝑋‘0) ∈ (Base‘𝐾)) |
25 | 3, 15, 16 | frlmbasmap 21802 |
. . . . . 6
⊢ (((0...0)
∈ V ∧ 𝑋 ∈
(Base‘𝑊)) →
𝑋 ∈ ((Base‘𝐾) ↑m
(0...0))) |
26 | 10, 14, 25 | syl2anc 583 |
. . . . 5
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m
(0...0))) |
27 | | fvex 6933 |
. . . . . 6
⊢
(Base‘𝐾)
∈ V |
28 | 21, 27, 19 | mapsnconst 8950 |
. . . . 5
⊢ (𝑋 ∈ ((Base‘𝐾) ↑m (0...0))
→ 𝑋 = ((0...0) ×
{(𝑋‘0)})) |
29 | 26, 28 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)})) |
30 | 9, 24, 29 | rspcedvdw 3638 |
. . 3
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛})) |
31 | | oveq1 7455 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 )) |
32 | 31 | eqeq2d 2751 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 ))) |
33 | | simprl 770 |
. . . . 5
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾)) |
34 | | 0prjspnrel.s |
. . . . 5
⊢ 𝑆 = (Base‘𝐾) |
35 | 33, 34 | eleqtrrdi 2855 |
. . . 4
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ 𝑆) |
36 | | ovexd 7483 |
. . . . . . . . 9
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V) |
37 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾)) |
38 | 5 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ 𝐵) |
39 | 12, 38 | sselid 4006 |
. . . . . . . . 9
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊)) |
40 | | 0prjspnrel.x |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑊) |
41 | | eqid 2740 |
. . . . . . . . 9
⊢
(.r‘𝐾) = (.r‘𝐾) |
42 | 3, 16, 15, 36, 37, 39, 40, 41 | frlmvscafval 21809 |
. . . . . . . 8
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) ×
{𝑛}) ∘f
(.r‘𝐾)
1
)) |
43 | 3, 15, 16 | frlmbasf 21803 |
. . . . . . . . . . 11
⊢ (((0...0)
∈ V ∧ 1 ∈ (Base‘𝑊)) → 1
:(0...0)⟶(Base‘𝐾)) |
44 | 36, 39, 43 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1
:(0...0)⟶(Base‘𝐾)) |
45 | | drngring 20758 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ Ring) |
46 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝐾) = (1r‘𝐾) |
47 | 15, 46 | ringidcl 20289 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Ring →
(1r‘𝐾)
∈ (Base‘𝐾)) |
48 | 45, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ DivRing →
(1r‘𝐾)
∈ (Base‘𝐾)) |
49 | 48 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r‘𝐾) ∈ (Base‘𝐾)) |
50 | 49 | snssd 4834 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r‘𝐾)} ⊆ (Base‘𝐾)) |
51 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec
(0...0))‘0)) |
52 | | elfz1eq 13595 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ (0...0) → 𝑑 = 0) |
53 | 51, 52 | fveq12d 6927 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ (0...0) → ( 1 ‘𝑑) = (((𝐾 unitVec
(0...0))‘0)‘0)) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1 ‘𝑑) = (((𝐾 unitVec
(0...0))‘0)‘0)) |
55 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 unitVec (0...0)) = (𝐾 unitVec
(0...0)) |
56 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing) |
57 | | ovexd 7483 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈
V) |
58 | 22 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈
(0...0)) |
59 | 55, 56, 57, 58, 46 | uvcvv1 21832 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) =
(1r‘𝐾)) |
60 | | fvex 6933 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 unitVec
(0...0))‘0)‘0) ∈ V |
61 | 60 | elsn 4663 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 unitVec
(0...0))‘0)‘0) ∈ {(1r‘𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) =
(1r‘𝐾)) |
62 | 59, 61 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈
{(1r‘𝐾)}) |
63 | 54, 62 | eqeltrd 2844 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1 ‘𝑑) ∈ {(1r‘𝐾)}) |
64 | 63 | ralrimiva 3152 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1 ‘𝑑) ∈ {(1r‘𝐾)}) |
65 | | fcdmssb 7156 |
. . . . . . . . . . 11
⊢
(({(1r‘𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1 ‘𝑑) ∈ {(1r‘𝐾)}) → ( 1
:(0...0)⟶(Base‘𝐾) ↔ 1
:(0...0)⟶{(1r‘𝐾)})) |
66 | 50, 64, 65 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1
:(0...0)⟶(Base‘𝐾) ↔ 1
:(0...0)⟶{(1r‘𝐾)})) |
67 | 44, 66 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1
:(0...0)⟶{(1r‘𝐾)}) |
68 | | vex 3492 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
69 | 68 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V) |
70 | | elsni 4665 |
. . . . . . . . . . 11
⊢ (𝑐 ∈
{(1r‘𝐾)}
→ 𝑐 =
(1r‘𝐾)) |
71 | 70 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (𝑐 ∈
{(1r‘𝐾)}
→ (𝑛(.r‘𝐾)𝑐) = (𝑛(.r‘𝐾)(1r‘𝐾))) |
72 | 45 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring) |
73 | 15, 41, 46, 72, 37 | ringridmd 20296 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r‘𝐾)(1r‘𝐾)) = 𝑛) |
74 | 71, 73 | sylan9eqr 2802 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r‘𝐾)}) → (𝑛(.r‘𝐾)𝑐) = 𝑛) |
75 | 36, 67, 69, 69, 74 | caofid2 7749 |
. . . . . . . 8
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f
(.r‘𝐾)
1 ) =
((0...0) × {𝑛})) |
76 | 42, 75 | eqtrd 2780 |
. . . . . . 7
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) ×
{𝑛})) |
77 | 76 | eqeq2d 2751 |
. . . . . 6
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛}))) |
78 | 77 | biimprd 248 |
. . . . 5
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 ))) |
79 | 78 | impr 454 |
. . . 4
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 )) |
80 | 32, 35, 79 | rspcedvdw 3638 |
. . 3
⊢ (((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚 ∈ 𝑆 𝑋 = (𝑚 · 1 )) |
81 | 30, 80 | rexlimddv 3167 |
. 2
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → ∃𝑚 ∈ 𝑆 𝑋 = (𝑚 · 1 )) |
82 | | 0prjspnrel.e |
. . 3
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
83 | 82 | prjsprel 42559 |
. 2
⊢ (𝑋 ∼ 1 ↔ ((𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝑆 𝑋 = (𝑚 · 1 ))) |
84 | 1, 6, 81, 83 | syl21anbrc 1344 |
1
⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∼ 1 ) |