Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0prjspnrel Structured version   Visualization version   GIF version

Theorem 0prjspnrel 40951
Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
0prjspnrel.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
0prjspnrel.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
0prjspnrel.x · = ( ·𝑠𝑊)
0prjspnrel.s 𝑆 = (Base‘𝐾)
0prjspnrel.w 𝑊 = (𝐾 freeLMod (0...0))
0prjspnrel.1 1 = ((𝐾 unitVec (0...0))‘0)
Assertion
Ref Expression
0prjspnrel ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑥, 1 ,𝑦,𝑙   𝑥,𝑆,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑊(𝑥,𝑦,𝑙)

Proof of Theorem 0prjspnrel
Dummy variables 𝑚 𝑛 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋𝐵)
2 0prjspnrel.b . . . 4 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
3 0prjspnrel.w . . . 4 𝑊 = (𝐾 freeLMod (0...0))
4 0prjspnrel.1 . . . 4 1 = ((𝐾 unitVec (0...0))‘0)
52, 3, 40prjspnlem 40947 . . 3 (𝐾 ∈ DivRing → 1𝐵)
65adantr 481 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 1𝐵)
7 ovexd 7392 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (0...0) ∈ V)
8 difss 4091 . . . . . . . . 9 ((Base‘𝑊) ∖ {(0g𝑊)}) ⊆ (Base‘𝑊)
92, 8eqsstri 3978 . . . . . . . 8 𝐵 ⊆ (Base‘𝑊)
109sseli 3940 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑊))
1110adantl 482 . . . . . 6 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ (Base‘𝑊))
12 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
143, 12, 13frlmbasf 21166 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...0)⟶(Base‘𝐾))
157, 11, 14syl2anc 584 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋:(0...0)⟶(Base‘𝐾))
16 c0ex 11149 . . . . . . . 8 0 ∈ V
1716snid 4622 . . . . . . 7 0 ∈ {0}
18 fz0sn 13541 . . . . . . 7 (0...0) = {0}
1917, 18eleqtrri 2837 . . . . . 6 0 ∈ (0...0)
2019a1i 11 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 0 ∈ (0...0))
2115, 20ffvelcdmd 7036 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → (𝑋‘0) ∈ (Base‘𝐾))
22 sneq 4596 . . . . . . 7 (𝑛 = (𝑋‘0) → {𝑛} = {(𝑋‘0)})
2322xpeq2d 5663 . . . . . 6 (𝑛 = (𝑋‘0) → ((0...0) × {𝑛}) = ((0...0) × {(𝑋‘0)}))
2423eqeq2d 2747 . . . . 5 (𝑛 = (𝑋‘0) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
2524adantl 482 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 = (𝑋‘0)) → (𝑋 = ((0...0) × {𝑛}) ↔ 𝑋 = ((0...0) × {(𝑋‘0)})))
263, 12, 13frlmbasmap 21165 . . . . . 6 (((0...0) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
277, 11, 26syl2anc 584 . . . . 5 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 ∈ ((Base‘𝐾) ↑m (0...0)))
28 fvex 6855 . . . . . 6 (Base‘𝐾) ∈ V
2918, 28, 16mapsnconst 8830 . . . . 5 (𝑋 ∈ ((Base‘𝐾) ↑m (0...0)) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3027, 29syl 17 . . . 4 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 = ((0...0) × {(𝑋‘0)}))
3121, 25, 30rspcedvd 3583 . . 3 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑛 ∈ (Base‘𝐾)𝑋 = ((0...0) × {𝑛}))
32 simprl 769 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛 ∈ (Base‘𝐾))
33 0prjspnrel.s . . . . 5 𝑆 = (Base‘𝐾)
3432, 33eleqtrrdi 2849 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑛𝑆)
35 oveq1 7364 . . . . . 6 (𝑚 = 𝑛 → (𝑚 · 1 ) = (𝑛 · 1 ))
3635eqeq2d 2747 . . . . 5 (𝑚 = 𝑛 → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
3736adantl 482 . . . 4 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) ∧ 𝑚 = 𝑛) → (𝑋 = (𝑚 · 1 ) ↔ 𝑋 = (𝑛 · 1 )))
38 ovexd 7392 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (0...0) ∈ V)
39 simpr 485 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ (Base‘𝐾))
405ad2antrr 724 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1𝐵)
419, 40sselid 3942 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝑊))
42 0prjspnrel.x . . . . . . . . 9 · = ( ·𝑠𝑊)
43 eqid 2736 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
443, 13, 12, 38, 39, 41, 42, 43frlmvscafval 21172 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ))
453, 12, 13frlmbasf 21166 . . . . . . . . . . 11 (((0...0) ∈ V ∧ 1 ∈ (Base‘𝑊)) → 1 :(0...0)⟶(Base‘𝐾))
4638, 41, 45syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶(Base‘𝐾))
47 drngring 20192 . . . . . . . . . . . . . 14 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
48 eqid 2736 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
4912, 48ringidcl 19989 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
5047, 49syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → (1r𝐾) ∈ (Base‘𝐾))
5150ad2antrr 724 . . . . . . . . . . . 12 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (1r𝐾) ∈ (Base‘𝐾))
5251snssd 4769 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → {(1r𝐾)} ⊆ (Base‘𝐾))
534a1i 11 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 1 = ((𝐾 unitVec (0...0))‘0))
54 elfz1eq 13452 . . . . . . . . . . . . . . 15 (𝑑 ∈ (0...0) → 𝑑 = 0)
5553, 54fveq12d 6849 . . . . . . . . . . . . . 14 (𝑑 ∈ (0...0) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
5655adantl 482 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) = (((𝐾 unitVec (0...0))‘0)‘0))
57 eqid 2736 . . . . . . . . . . . . . . 15 (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0))
58 simplll 773 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 𝐾 ∈ DivRing)
59 ovexd 7392 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (0...0) ∈ V)
6019a1i 11 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → 0 ∈ (0...0))
6157, 58, 59, 60, 48uvcvv1 21195 . . . . . . . . . . . . . 14 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
62 fvex 6855 . . . . . . . . . . . . . . 15 (((𝐾 unitVec (0...0))‘0)‘0) ∈ V
6362elsn 4601 . . . . . . . . . . . . . 14 ((((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)} ↔ (((𝐾 unitVec (0...0))‘0)‘0) = (1r𝐾))
6461, 63sylibr 233 . . . . . . . . . . . . 13 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → (((𝐾 unitVec (0...0))‘0)‘0) ∈ {(1r𝐾)})
6556, 64eqeltrd 2838 . . . . . . . . . . . 12 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑑 ∈ (0...0)) → ( 1𝑑) ∈ {(1r𝐾)})
6665ralrimiva 3143 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)})
67 fcdmssb 7069 . . . . . . . . . . 11 (({(1r𝐾)} ⊆ (Base‘𝐾) ∧ ∀𝑑 ∈ (0...0)( 1𝑑) ∈ {(1r𝐾)}) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6852, 66, 67syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → ( 1 :(0...0)⟶(Base‘𝐾) ↔ 1 :(0...0)⟶{(1r𝐾)}))
6946, 68mpbid 231 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 1 :(0...0)⟶{(1r𝐾)})
70 vex 3449 . . . . . . . . . 10 𝑛 ∈ V
7170a1i 11 . . . . . . . . 9 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝑛 ∈ V)
72 elsni 4603 . . . . . . . . . . 11 (𝑐 ∈ {(1r𝐾)} → 𝑐 = (1r𝐾))
7372oveq2d 7373 . . . . . . . . . 10 (𝑐 ∈ {(1r𝐾)} → (𝑛(.r𝐾)𝑐) = (𝑛(.r𝐾)(1r𝐾)))
7447ad2antrr 724 . . . . . . . . . . 11 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → 𝐾 ∈ Ring)
7512, 43, 48ringridm 19993 . . . . . . . . . . 11 ((𝐾 ∈ Ring ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7674, 39, 75syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛(.r𝐾)(1r𝐾)) = 𝑛)
7773, 76sylan9eqr 2798 . . . . . . . . 9 ((((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) ∧ 𝑐 ∈ {(1r𝐾)}) → (𝑛(.r𝐾)𝑐) = 𝑛)
7838, 69, 71, 71, 77caofid2 7651 . . . . . . . 8 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (((0...0) × {𝑛}) ∘f (.r𝐾) 1 ) = ((0...0) × {𝑛}))
7944, 78eqtrd 2776 . . . . . . 7 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑛 · 1 ) = ((0...0) × {𝑛}))
8079eqeq2d 2747 . . . . . 6 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = (𝑛 · 1 ) ↔ 𝑋 = ((0...0) × {𝑛})))
8180biimprd 247 . . . . 5 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ 𝑛 ∈ (Base‘𝐾)) → (𝑋 = ((0...0) × {𝑛}) → 𝑋 = (𝑛 · 1 )))
8281impr 455 . . . 4 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → 𝑋 = (𝑛 · 1 ))
8334, 37, 82rspcedvd 3583 . . 3 (((𝐾 ∈ DivRing ∧ 𝑋𝐵) ∧ (𝑛 ∈ (Base‘𝐾) ∧ 𝑋 = ((0...0) × {𝑛}))) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
8431, 83rexlimddv 3158 . 2 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → ∃𝑚𝑆 𝑋 = (𝑚 · 1 ))
85 0prjspnrel.e . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
8685prjsprel 40928 . 2 (𝑋 1 ↔ ((𝑋𝐵1𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 1 )))
871, 6, 84, 86syl21anbrc 1344 1 ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  {copab 5167   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  0cc0 11051  ...cfz 13424  Basecbs 17083  .rcmulr 17134   ·𝑠 cvsca 17137  0gc0g 17321  1rcur 19913  Ringcrg 19964  DivRingcdr 20185   freeLMod cfrlm 21152   unitVec cuvc 21188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-nzr 20728  df-dsmm 21138  df-frlm 21153  df-uvc 21189
This theorem is referenced by:  0prjspn  40952
  Copyright terms: Public domain W3C validator