MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgin Structured version   Visualization version   GIF version

Theorem subrgin 19001
Description: The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgin ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴𝐵) ∈ (SubRing‘𝑅))

Proof of Theorem subrgin
StepHypRef Expression
1 intprg 4696 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → {𝐴, 𝐵} = (𝐴𝐵))
2 prssi 4536 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → {𝐴, 𝐵} ⊆ (SubRing‘𝑅))
3 prnzg 4495 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → {𝐴, 𝐵} ≠ ∅)
43adantr 468 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → {𝐴, 𝐵} ≠ ∅)
5 subrgint 19000 . . 3 (({𝐴, 𝐵} ⊆ (SubRing‘𝑅) ∧ {𝐴, 𝐵} ≠ ∅) → {𝐴, 𝐵} ∈ (SubRing‘𝑅))
62, 4, 5syl2anc 575 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → {𝐴, 𝐵} ∈ (SubRing‘𝑅))
71, 6eqeltrrd 2882 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴𝐵) ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 2155  wne 2974  cin 3762  wss 3763  c0 4110  {cpr 4366   cint 4662  cfv 6095  SubRingcsubrg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-3 11359  df-ndx 16065  df-slot 16066  df-base 16068  df-sets 16069  df-ress 16070  df-plusg 16160  df-mulr 16161  df-0g 16301  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-grp 17624  df-minusg 17625  df-subg 17787  df-mgp 18686  df-ur 18698  df-ring 18745  df-subrg 18976
This theorem is referenced by:  subrgmpl  19663
  Copyright terms: Public domain W3C validator