| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrnloopvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of usgrnloopv 29127, not using umgrnloopv 29033. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrnloopvALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnzg 4742 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑊 → {𝑀, 𝑁} ≠ ∅) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → {𝑀, 𝑁} ≠ ∅) |
| 3 | neeq1 2987 | . . . . . . . 8 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) |
| 5 | 2, 4 | mpbird 257 | . . . . . 6 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐸‘𝑋) ≠ ∅) |
| 6 | fvfundmfvn0 6901 | . . . . . 6 ⊢ ((𝐸‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) |
| 8 | usgrnloopv.e | . . . . . . . . . 10 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 9 | 8 | usgredg2 29119 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
| 10 | fveq2 6858 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (♯‘(𝐸‘𝑋)) = (♯‘{𝑀, 𝑁})) | |
| 11 | 10 | eqeq1d 2731 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) |
| 12 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
| 13 | 12 | hashprdifel 14363 | . . . . . . . . . . . 12 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
| 14 | 13 | simp3d 1144 | . . . . . . . . . . 11 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → 𝑀 ≠ 𝑁) |
| 15 | 11, 14 | biimtrdi 253 | . . . . . . . . . 10 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
| 17 | 9, 16 | syl5com 31 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁)) |
| 18 | 17 | expcom 413 | . . . . . . 7 ⊢ (𝑋 ∈ dom 𝐸 → (𝐺 ∈ USGraph → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁))) |
| 19 | 18 | com23 86 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐸 → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
| 21 | 7, 20 | mpcom 38 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁)) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑊 → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
| 23 | 22 | com13 88 | . 2 ⊢ (𝐺 ∈ USGraph → (𝑀 ∈ 𝑊 → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {csn 4589 {cpr 4591 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ‘cfv 6511 2c2 12241 ♯chash 14295 iEdgciedg 28924 USGraphcusgr 29076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-umgr 29010 df-usgr 29078 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |