Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrnloopvALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgrnloopv 27576, not using umgrnloopv 27485. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrnloopvALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnzg 4715 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑊 → {𝑀, 𝑁} ≠ ∅) | |
2 | 1 | adantl 482 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → {𝑀, 𝑁} ≠ ∅) |
3 | neeq1 3007 | . . . . . . . 8 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) |
5 | 2, 4 | mpbird 256 | . . . . . 6 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐸‘𝑋) ≠ ∅) |
6 | fvfundmfvn0 6821 | . . . . . 6 ⊢ ((𝐸‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) |
8 | usgrnloopv.e | . . . . . . . . . 10 ⊢ 𝐸 = (iEdg‘𝐺) | |
9 | 8 | usgredg2 27568 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
10 | fveq2 6783 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (♯‘(𝐸‘𝑋)) = (♯‘{𝑀, 𝑁})) | |
11 | 10 | eqeq1d 2741 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) |
12 | eqid 2739 | . . . . . . . . . . . . 13 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
13 | 12 | hashprdifel 14122 | . . . . . . . . . . . 12 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
14 | 13 | simp3d 1143 | . . . . . . . . . . 11 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → 𝑀 ≠ 𝑁) |
15 | 11, 14 | syl6bi 252 | . . . . . . . . . 10 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
16 | 15 | adantr 481 | . . . . . . . . 9 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
17 | 9, 16 | syl5com 31 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁)) |
18 | 17 | expcom 414 | . . . . . . 7 ⊢ (𝑋 ∈ dom 𝐸 → (𝐺 ∈ USGraph → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁))) |
19 | 18 | com23 86 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐸 → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
21 | 7, 20 | mpcom 38 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁)) |
22 | 21 | ex 413 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑊 → (𝐺 ∈ USGraph → 𝑀 ≠ 𝑁))) |
23 | 22 | com13 88 | . 2 ⊢ (𝐺 ∈ USGraph → (𝑀 ∈ 𝑊 → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
24 | 23 | imp 407 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ∅c0 4257 {csn 4562 {cpr 4564 dom cdm 5590 ↾ cres 5592 Fun wfun 6431 ‘cfv 6437 2c2 12037 ♯chash 14053 iEdgciedg 27376 USGraphcusgr 27528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-oadd 8310 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-dju 9668 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-hash 14054 df-umgr 27462 df-usgr 27530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |