MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloopv Structured version   Visualization version   GIF version

Theorem umgrnloopv 27831
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloopv ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))

Proof of Theorem umgrnloopv
StepHypRef Expression
1 prnzg 4734 . . . . . . . 8 (𝑀𝑊 → {𝑀, 𝑁} ≠ ∅)
21adantl 483 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → {𝑀, 𝑁} ≠ ∅)
3 neeq1 3004 . . . . . . . 8 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
43adantr 482 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
52, 4mpbird 257 . . . . . 6 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐸𝑋) ≠ ∅)
6 fvfundmfvn0 6877 . . . . . 6 ((𝐸𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
75, 6syl 17 . . . . 5 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
8 eqid 2737 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
9 umgrnloopv.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
108, 9umgredg2 27825 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
11 fveqeq2 6843 . . . . . . . . . . 11 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2))
12 eqid 2737 . . . . . . . . . . . . 13 {𝑀, 𝑁} = {𝑀, 𝑁}
1312hashprdifel 14222 . . . . . . . . . . . 12 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
1413simp3d 1144 . . . . . . . . . . 11 ((♯‘{𝑀, 𝑁}) = 2 → 𝑀𝑁)
1511, 14syl6bi 253 . . . . . . . . . 10 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1615adantr 482 . . . . . . . . 9 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1710, 16syl5com 31 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁))
1817expcom 415 . . . . . . 7 (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁)))
1918com23 86 . . . . . 6 (𝑋 ∈ dom 𝐸 → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2019adantr 482 . . . . 5 ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
217, 20mpcom 38 . . . 4 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁))
2221ex 414 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑊 → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2322com13 88 . 2 (𝐺 ∈ UMGraph → (𝑀𝑊 → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁)))
2423imp 408 1 ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wne 2941  c0 4277  {csn 4581  {cpr 4583  dom cdm 5627  cres 5629  Fun wfun 6482  cfv 6488  2c2 12138  chash 14154  Vtxcvtx 27721  iEdgciedg 27722  UMGraphcumgr 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-oadd 8380  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-dju 9767  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-n0 12344  df-z 12430  df-uz 12693  df-fz 13350  df-hash 14155  df-umgr 27808
This theorem is referenced by:  umgrnloop  27833  usgrnloopv  27922
  Copyright terms: Public domain W3C validator