MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloopv Structured version   Visualization version   GIF version

Theorem umgrnloopv 27379
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloopv ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))

Proof of Theorem umgrnloopv
StepHypRef Expression
1 prnzg 4711 . . . . . . . 8 (𝑀𝑊 → {𝑀, 𝑁} ≠ ∅)
21adantl 481 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → {𝑀, 𝑁} ≠ ∅)
3 neeq1 3005 . . . . . . . 8 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
43adantr 480 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
52, 4mpbird 256 . . . . . 6 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐸𝑋) ≠ ∅)
6 fvfundmfvn0 6794 . . . . . 6 ((𝐸𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
75, 6syl 17 . . . . 5 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
8 eqid 2738 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
9 umgrnloopv.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
108, 9umgredg2 27373 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
11 fveqeq2 6765 . . . . . . . . . . 11 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2))
12 eqid 2738 . . . . . . . . . . . . 13 {𝑀, 𝑁} = {𝑀, 𝑁}
1312hashprdifel 14041 . . . . . . . . . . . 12 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
1413simp3d 1142 . . . . . . . . . . 11 ((♯‘{𝑀, 𝑁}) = 2 → 𝑀𝑁)
1511, 14syl6bi 252 . . . . . . . . . 10 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1615adantr 480 . . . . . . . . 9 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1710, 16syl5com 31 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁))
1817expcom 413 . . . . . . 7 (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁)))
1918com23 86 . . . . . 6 (𝑋 ∈ dom 𝐸 → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2019adantr 480 . . . . 5 ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
217, 20mpcom 38 . . . 4 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁))
2221ex 412 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑊 → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2322com13 88 . 2 (𝐺 ∈ UMGraph → (𝑀𝑊 → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁)))
2423imp 406 1 ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253  {csn 4558  {cpr 4560  dom cdm 5580  cres 5582  Fun wfun 6412  cfv 6418  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  UMGraphcumgr 27354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-umgr 27356
This theorem is referenced by:  umgrnloop  27381  usgrnloopv  27470
  Copyright terms: Public domain W3C validator