![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrnloopv | Structured version Visualization version GIF version |
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
umgrnloopv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnzg 4781 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑊 → {𝑀, 𝑁} ≠ ∅) | |
2 | 1 | adantl 482 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → {𝑀, 𝑁} ≠ ∅) |
3 | neeq1 3003 | . . . . . . . 8 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) |
5 | 2, 4 | mpbird 256 | . . . . . 6 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐸‘𝑋) ≠ ∅) |
6 | fvfundmfvn0 6931 | . . . . . 6 ⊢ ((𝐸‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) |
8 | eqid 2732 | . . . . . . . . . 10 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
9 | umgrnloopv.e | . . . . . . . . . 10 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 8, 9 | umgredg2 28349 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
11 | fveqeq2 6897 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
12 | eqid 2732 | . . . . . . . . . . . . 13 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
13 | 12 | hashprdifel 14354 | . . . . . . . . . . . 12 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
14 | 13 | simp3d 1144 | . . . . . . . . . . 11 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → 𝑀 ≠ 𝑁) |
15 | 11, 14 | syl6bi 252 | . . . . . . . . . 10 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
16 | 15 | adantr 481 | . . . . . . . . 9 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
17 | 10, 16 | syl5com 31 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁)) |
18 | 17 | expcom 414 | . . . . . . 7 ⊢ (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁))) |
19 | 18 | com23 86 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐸 → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
21 | 7, 20 | mpcom 38 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁)) |
22 | 21 | ex 413 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑊 → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
23 | 22 | com13 88 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝑀 ∈ 𝑊 → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
24 | 23 | imp 407 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 {csn 4627 {cpr 4629 dom cdm 5675 ↾ cres 5677 Fun wfun 6534 ‘cfv 6540 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 UMGraphcumgr 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-umgr 28332 |
This theorem is referenced by: umgrnloop 28357 usgrnloopv 28446 |
Copyright terms: Public domain | W3C validator |