| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrnloopv | Structured version Visualization version GIF version | ||
| Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrnloopv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnzg 4732 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑊 → {𝑀, 𝑁} ≠ ∅) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → {𝑀, 𝑁} ≠ ∅) |
| 3 | neeq1 2987 | . . . . . . . 8 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) |
| 5 | 2, 4 | mpbird 257 | . . . . . 6 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐸‘𝑋) ≠ ∅) |
| 6 | fvfundmfvn0 6867 | . . . . . 6 ⊢ ((𝐸‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) |
| 8 | eqid 2729 | . . . . . . . . . 10 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 9 | umgrnloopv.e | . . . . . . . . . 10 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 10 | 8, 9 | umgredg2 29063 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
| 11 | fveqeq2 6835 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
| 12 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
| 13 | 12 | hashprdifel 14323 | . . . . . . . . . . . 12 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
| 14 | 13 | simp3d 1144 | . . . . . . . . . . 11 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → 𝑀 ≠ 𝑁) |
| 15 | 11, 14 | biimtrdi 253 | . . . . . . . . . 10 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
| 17 | 10, 16 | syl5com 31 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁)) |
| 18 | 17 | expcom 413 | . . . . . . 7 ⊢ (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁))) |
| 19 | 18 | com23 86 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐸 → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
| 21 | 7, 20 | mpcom 38 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁)) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑊 → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
| 23 | 22 | com13 88 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝑀 ∈ 𝑊 → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 {csn 4579 {cpr 4581 dom cdm 5623 ↾ cres 5625 Fun wfun 6480 ‘cfv 6486 2c2 12201 ♯chash 14255 Vtxcvtx 28959 iEdgciedg 28960 UMGraphcumgr 29044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-umgr 29046 |
| This theorem is referenced by: umgrnloop 29071 usgrnloopv 29163 |
| Copyright terms: Public domain | W3C validator |