![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrnloopv | Structured version Visualization version GIF version |
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
umgrnloopv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnzg 4778 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑊 → {𝑀, 𝑁} ≠ ∅) | |
2 | 1 | adantl 480 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → {𝑀, 𝑁} ≠ ∅) |
3 | neeq1 2993 | . . . . . . . 8 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) | |
4 | 3 | adantr 479 | . . . . . . 7 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅)) |
5 | 2, 4 | mpbird 256 | . . . . . 6 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐸‘𝑋) ≠ ∅) |
6 | fvfundmfvn0 6934 | . . . . . 6 ⊢ ((𝐸‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋}))) |
8 | eqid 2725 | . . . . . . . . . 10 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
9 | umgrnloopv.e | . . . . . . . . . 10 ⊢ 𝐸 = (iEdg‘𝐺) | |
10 | 8, 9 | umgredg2 28955 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
11 | fveqeq2 6900 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
12 | eqid 2725 | . . . . . . . . . . . . 13 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
13 | 12 | hashprdifel 14387 | . . . . . . . . . . . 12 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
14 | 13 | simp3d 1141 | . . . . . . . . . . 11 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → 𝑀 ≠ 𝑁) |
15 | 11, 14 | biimtrdi 252 | . . . . . . . . . 10 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
16 | 15 | adantr 479 | . . . . . . . . 9 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → ((♯‘(𝐸‘𝑋)) = 2 → 𝑀 ≠ 𝑁)) |
17 | 10, 16 | syl5com 31 | . . . . . . . 8 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁)) |
18 | 17 | expcom 412 | . . . . . . 7 ⊢ (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → 𝑀 ≠ 𝑁))) |
19 | 18 | com23 86 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐸 → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
20 | 19 | adantr 479 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
21 | 7, 20 | mpcom 38 | . . . 4 ⊢ (((𝐸‘𝑋) = {𝑀, 𝑁} ∧ 𝑀 ∈ 𝑊) → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁)) |
22 | 21 | ex 411 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑊 → (𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁))) |
23 | 22 | com13 88 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝑀 ∈ 𝑊 → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
24 | 23 | imp 405 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊) → ((𝐸‘𝑋) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∅c0 4318 {csn 4624 {cpr 4626 dom cdm 5672 ↾ cres 5674 Fun wfun 6536 ‘cfv 6542 2c2 12295 ♯chash 14319 Vtxcvtx 28851 iEdgciedg 28852 UMGraphcumgr 28936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 df-umgr 28938 |
This theorem is referenced by: umgrnloop 28963 usgrnloopv 29055 |
Copyright terms: Public domain | W3C validator |