MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloopv Structured version   Visualization version   GIF version

Theorem umgrnloopv 27476
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloopv ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))

Proof of Theorem umgrnloopv
StepHypRef Expression
1 prnzg 4714 . . . . . . . 8 (𝑀𝑊 → {𝑀, 𝑁} ≠ ∅)
21adantl 482 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → {𝑀, 𝑁} ≠ ∅)
3 neeq1 3006 . . . . . . . 8 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
43adantr 481 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
52, 4mpbird 256 . . . . . 6 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐸𝑋) ≠ ∅)
6 fvfundmfvn0 6812 . . . . . 6 ((𝐸𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
75, 6syl 17 . . . . 5 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
8 eqid 2738 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
9 umgrnloopv.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
108, 9umgredg2 27470 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
11 fveqeq2 6783 . . . . . . . . . . 11 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2))
12 eqid 2738 . . . . . . . . . . . . 13 {𝑀, 𝑁} = {𝑀, 𝑁}
1312hashprdifel 14113 . . . . . . . . . . . 12 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
1413simp3d 1143 . . . . . . . . . . 11 ((♯‘{𝑀, 𝑁}) = 2 → 𝑀𝑁)
1511, 14syl6bi 252 . . . . . . . . . 10 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1615adantr 481 . . . . . . . . 9 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((♯‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1710, 16syl5com 31 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁))
1817expcom 414 . . . . . . 7 (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁)))
1918com23 86 . . . . . 6 (𝑋 ∈ dom 𝐸 → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2019adantr 481 . . . . 5 ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
217, 20mpcom 38 . . . 4 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁))
2221ex 413 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑊 → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2322com13 88 . 2 (𝐺 ∈ UMGraph → (𝑀𝑊 → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁)))
2423imp 407 1 ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256  {csn 4561  {cpr 4563  dom cdm 5589  cres 5591  Fun wfun 6427  cfv 6433  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  UMGraphcumgr 27451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-umgr 27453
This theorem is referenced by:  umgrnloop  27478  usgrnloopv  27567
  Copyright terms: Public domain W3C validator