Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inidl Structured version   Visualization version   GIF version

Theorem inidl 38017
Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
inidl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))

Proof of Theorem inidl
StepHypRef Expression
1 intprg 4986 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
213adant1 1129 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
3 prnzg 4783 . . . . . 6 (𝐼 ∈ (Idl‘𝑅) → {𝐼, 𝐽} ≠ ∅)
43adantr 480 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ≠ ∅)
5 prssi 4826 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ⊆ (Idl‘𝑅))
64, 5jca 511 . . . 4 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)))
7 intidl 38016 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
873expb 1119 . . . 4 ((𝑅 ∈ RingOps ∧ ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
96, 8sylan2 593 . . 3 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
1093impb 1114 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
112, 10eqeltrrd 2840 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cin 3962  wss 3963  c0 4339  {cpr 4633   cint 4951  cfv 6563  RingOpscrngo 37881  Idlcidl 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-idl 37997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator