Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inidl Structured version   Visualization version   GIF version

Theorem inidl 38076
Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
inidl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))

Proof of Theorem inidl
StepHypRef Expression
1 intprg 4931 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
213adant1 1130 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
3 prnzg 4730 . . . . . 6 (𝐼 ∈ (Idl‘𝑅) → {𝐼, 𝐽} ≠ ∅)
43adantr 480 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ≠ ∅)
5 prssi 4772 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ⊆ (Idl‘𝑅))
64, 5jca 511 . . . 4 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)))
7 intidl 38075 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
873expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
96, 8sylan2 593 . . 3 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
1093impb 1114 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
112, 10eqeltrrd 2832 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4282  {cpr 4577   cint 4897  cfv 6487  RingOpscrngo 37940  Idlcidl 38053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fv 6495  df-ov 7355  df-idl 38056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator