Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inidl | Structured version Visualization version GIF version |
Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
inidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4909 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} = (𝐼 ∩ 𝐽)) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} = (𝐼 ∩ 𝐽)) |
3 | prnzg 4711 | . . . . . 6 ⊢ (𝐼 ∈ (Idl‘𝑅) → {𝐼, 𝐽} ≠ ∅) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ≠ ∅) |
5 | prssi 4751 | . . . . 5 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ⊆ (Idl‘𝑅)) | |
6 | 4, 5 | jca 511 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) |
7 | intidl 36114 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ {𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) | |
8 | 7 | 3expb 1118 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
9 | 6, 8 | sylan2 592 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅))) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
10 | 9 | 3impb 1113 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ∩ {𝐼, 𝐽} ∈ (Idl‘𝑅)) |
11 | 2, 10 | eqeltrrd 2840 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {cpr 4560 ∩ cint 4876 ‘cfv 6418 RingOpscrngo 35979 Idlcidl 36092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-idl 36095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |