Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelpisys Structured version   Visualization version   GIF version

Theorem inelpisys 32817
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
inelpisys ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝑃(𝑠)

Proof of Theorem inelpisys
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intprg 4946 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1131 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 inteq 4914 . . . 4 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
43eleq1d 2819 . . 3 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
5 ispisys.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
65ispisys2 32816 . . . . 5 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
76simprbi 498 . . . 4 (𝑆𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
873ad2ant1 1134 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
9 prelpwi 5408 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
1093adant1 1131 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
11 prfi 9272 . . . . . 6 {𝐴, 𝐵} ∈ Fin
1211a1i 11 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ Fin)
1310, 12elind 4158 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin))
14 prnzg 4743 . . . . . . 7 (𝐴𝑆 → {𝐴, 𝐵} ≠ ∅)
15143ad2ant2 1135 . . . . . 6 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≠ ∅)
1615neneqd 2945 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} = ∅)
17 elsni 4607 . . . . 5 ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅)
1816, 17nsyl 140 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} ∈ {∅})
1913, 18eldifd 3925 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
204, 8, 19rspcdva 3584 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
212, 20eqeltrrd 2835 1 ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  {crab 3406  cdif 3911  cin 3913  wss 3914  c0 4286  𝒫 cpw 4564  {csn 4590  {cpr 4592   cint 4911  cfv 6500  Fincfn 8889  ficfi 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-en 8890  df-fin 8893  df-fi 9355
This theorem is referenced by:  ldgenpisyslem3  32828
  Copyright terms: Public domain W3C validator