![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inelpisys | Structured version Visualization version GIF version |
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
inelpisys | ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4986 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
2 | 1 | 3adant1 1131 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
3 | inteq 4954 | . . . 4 ⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩ {𝐴, 𝐵}) | |
4 | 3 | eleq1d 2819 | . . 3 ⊢ (𝑥 = {𝐴, 𝐵} → (∩ 𝑥 ∈ 𝑆 ↔ ∩ {𝐴, 𝐵} ∈ 𝑆)) |
5 | ispisys.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
6 | 5 | ispisys2 33151 | . . . . 5 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆)) |
7 | 6 | simprbi 498 | . . . 4 ⊢ (𝑆 ∈ 𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
8 | 7 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
9 | prelpwi 5448 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) | |
10 | 9 | 3adant1 1131 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
11 | prfi 9322 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ Fin) |
13 | 10, 12 | elind 4195 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin)) |
14 | prnzg 4783 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → {𝐴, 𝐵} ≠ ∅) | |
15 | 14 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≠ ∅) |
16 | 15 | neneqd 2946 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} = ∅) |
17 | elsni 4646 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅) | |
18 | 16, 17 | nsyl 140 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} ∈ {∅}) |
19 | 13, 18 | eldifd 3960 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) |
20 | 4, 8, 19 | rspcdva 3614 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrrd 2835 | 1 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 {crab 3433 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 {csn 4629 {cpr 4631 ∩ cint 4951 ‘cfv 6544 Fincfn 8939 ficfi 9405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-fin 8943 df-fi 9406 |
This theorem is referenced by: ldgenpisyslem3 33163 |
Copyright terms: Public domain | W3C validator |