| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inelpisys | Structured version Visualization version GIF version | ||
| Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.) |
| Ref | Expression |
|---|---|
| ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| Ref | Expression |
|---|---|
| inelpisys | ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg 4981 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1131 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 3 | inteq 4949 | . . . 4 ⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩ {𝐴, 𝐵}) | |
| 4 | 3 | eleq1d 2826 | . . 3 ⊢ (𝑥 = {𝐴, 𝐵} → (∩ 𝑥 ∈ 𝑆 ↔ ∩ {𝐴, 𝐵} ∈ 𝑆)) |
| 5 | ispisys.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 6 | 5 | ispisys2 34154 | . . . . 5 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆)) |
| 7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑆 ∈ 𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
| 8 | 7 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
| 9 | prelpwi 5452 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) | |
| 10 | 9 | 3adant1 1131 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
| 11 | prfi 9363 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ Fin) |
| 13 | 10, 12 | elind 4200 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin)) |
| 14 | prnzg 4778 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → {𝐴, 𝐵} ≠ ∅) | |
| 15 | 14 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≠ ∅) |
| 16 | 15 | neneqd 2945 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} = ∅) |
| 17 | elsni 4643 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅) | |
| 18 | 16, 17 | nsyl 140 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} ∈ {∅}) |
| 19 | 13, 18 | eldifd 3962 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) |
| 20 | 4, 8, 19 | rspcdva 3623 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} ∈ 𝑆) |
| 21 | 2, 20 | eqeltrrd 2842 | 1 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 {cpr 4628 ∩ cint 4946 ‘cfv 6561 Fincfn 8985 ficfi 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-2o 8507 df-en 8986 df-fin 8989 df-fi 9451 |
| This theorem is referenced by: ldgenpisyslem3 34166 |
| Copyright terms: Public domain | W3C validator |