Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelpisys Structured version   Visualization version   GIF version

Theorem inelpisys 34118
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
inelpisys ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝑃(𝑠)

Proof of Theorem inelpisys
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intprg 5005 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 inteq 4973 . . . 4 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
43eleq1d 2829 . . 3 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
5 ispisys.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
65ispisys2 34117 . . . . 5 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
76simprbi 496 . . . 4 (𝑆𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
873ad2ant1 1133 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
9 prelpwi 5467 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
1093adant1 1130 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
11 prfi 9391 . . . . . 6 {𝐴, 𝐵} ∈ Fin
1211a1i 11 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ Fin)
1310, 12elind 4223 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin))
14 prnzg 4803 . . . . . . 7 (𝐴𝑆 → {𝐴, 𝐵} ≠ ∅)
15143ad2ant2 1134 . . . . . 6 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≠ ∅)
1615neneqd 2951 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} = ∅)
17 elsni 4665 . . . . 5 ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅)
1816, 17nsyl 140 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} ∈ {∅})
1913, 18eldifd 3987 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
204, 8, 19rspcdva 3636 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
212, 20eqeltrrd 2845 1 ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650   cint 4970  cfv 6573  Fincfn 9003  ficfi 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480
This theorem is referenced by:  ldgenpisyslem3  34129
  Copyright terms: Public domain W3C validator