Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inelpisys | Structured version Visualization version GIF version |
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
inelpisys | ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4872 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
3 | inteq 4842 | . . . 4 ⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩ {𝐴, 𝐵}) | |
4 | 3 | eleq1d 2837 | . . 3 ⊢ (𝑥 = {𝐴, 𝐵} → (∩ 𝑥 ∈ 𝑆 ↔ ∩ {𝐴, 𝐵} ∈ 𝑆)) |
5 | ispisys.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
6 | 5 | ispisys2 31641 | . . . . 5 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆)) |
7 | 6 | simprbi 501 | . . . 4 ⊢ (𝑆 ∈ 𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
9 | prelpwi 5309 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) | |
10 | 9 | 3adant1 1128 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
11 | prfi 8827 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ Fin) |
13 | 10, 12 | elind 4100 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin)) |
14 | prnzg 4672 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → {𝐴, 𝐵} ≠ ∅) | |
15 | 14 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≠ ∅) |
16 | 15 | neneqd 2957 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} = ∅) |
17 | elsni 4540 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅) | |
18 | 16, 17 | nsyl 142 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} ∈ {∅}) |
19 | 13, 18 | eldifd 3870 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) |
20 | 4, 8, 19 | rspcdva 3544 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} ∈ 𝑆) |
21 | 2, 20 | eqeltrrd 2854 | 1 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 {crab 3075 ∖ cdif 3856 ∩ cin 3858 ⊆ wss 3859 ∅c0 4226 𝒫 cpw 4495 {csn 4523 {cpr 4525 ∩ cint 4839 ‘cfv 6336 Fincfn 8528 ficfi 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-om 7581 df-1o 8113 df-en 8529 df-fin 8532 df-fi 8909 |
This theorem is referenced by: ldgenpisyslem3 31653 |
Copyright terms: Public domain | W3C validator |