Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelpisys Structured version   Visualization version   GIF version

Theorem inelpisys 31058
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
inelpisys ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝑃(𝑠)

Proof of Theorem inelpisys
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intprg 4777 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1110 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 inteq 4746 . . . 4 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
4 eqidd 2773 . . . 4 (𝑥 = {𝐴, 𝐵} → 𝑆 = 𝑆)
53, 4eleq12d 2854 . . 3 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
6 ispisys.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
76ispisys2 31057 . . . . 5 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
87simprbi 489 . . . 4 (𝑆𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
983ad2ant1 1113 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
10 prssi 4622 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ⊆ 𝑆)
11 prex 5183 . . . . . . . 8 {𝐴, 𝐵} ∈ V
1211elpw 4422 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝒫 𝑆 ↔ {𝐴, 𝐵} ⊆ 𝑆)
1310, 12sylibr 226 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
14133adant1 1110 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
15 prfi 8582 . . . . . 6 {𝐴, 𝐵} ∈ Fin
1615a1i 11 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ Fin)
1714, 16elind 4053 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin))
18 prnzg 4581 . . . . . . 7 (𝐴𝑆 → {𝐴, 𝐵} ≠ ∅)
19183ad2ant2 1114 . . . . . 6 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≠ ∅)
2019neneqd 2966 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} = ∅)
21 elsni 4452 . . . . . 6 ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅)
2221con3i 152 . . . . 5 (¬ {𝐴, 𝐵} = ∅ → ¬ {𝐴, 𝐵} ∈ {∅})
2320, 22syl 17 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} ∈ {∅})
2417, 23eldifd 3834 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
255, 9, 24rspcdva 3535 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
262, 25eqeltrrd 2861 1 ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wral 3082  {crab 3086  cdif 3820  cin 3822  wss 3823  c0 4172  𝒫 cpw 4416  {csn 4435  {cpr 4437   cint 4743  cfv 6182  Fincfn 8300  ficfi 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-en 8301  df-fin 8304  df-fi 8664
This theorem is referenced by:  ldgenpisyslem3  31069
  Copyright terms: Public domain W3C validator