Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelpisys Structured version   Visualization version   GIF version

Theorem inelpisys 33140
Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
inelpisys ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝑃(𝑠)

Proof of Theorem inelpisys
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 intprg 4984 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 inteq 4952 . . . 4 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
43eleq1d 2818 . . 3 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
5 ispisys.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
65ispisys2 33139 . . . . 5 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
76simprbi 497 . . . 4 (𝑆𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
873ad2ant1 1133 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆)
9 prelpwi 5446 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
1093adant1 1130 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
11 prfi 9318 . . . . . 6 {𝐴, 𝐵} ∈ Fin
1211a1i 11 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ Fin)
1310, 12elind 4193 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin))
14 prnzg 4781 . . . . . . 7 (𝐴𝑆 → {𝐴, 𝐵} ≠ ∅)
15143ad2ant2 1134 . . . . . 6 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≠ ∅)
1615neneqd 2945 . . . . 5 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} = ∅)
17 elsni 4644 . . . . 5 ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅)
1816, 17nsyl 140 . . . 4 ((𝑆𝑃𝐴𝑆𝐵𝑆) → ¬ {𝐴, 𝐵} ∈ {∅})
1913, 18eldifd 3958 . . 3 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
204, 8, 19rspcdva 3613 . 2 ((𝑆𝑃𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
212, 20eqeltrrd 2834 1 ((𝑆𝑃𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  cdif 3944  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627  {cpr 4629   cint 4949  cfv 6540  Fincfn 8935  ficfi 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939  df-fi 9402
This theorem is referenced by:  ldgenpisyslem3  33151
  Copyright terms: Public domain W3C validator