| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inelpisys | Structured version Visualization version GIF version | ||
| Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020.) |
| Ref | Expression |
|---|---|
| ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| Ref | Expression |
|---|---|
| inelpisys | ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg 4948 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 3 | inteq 4916 | . . . 4 ⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩ {𝐴, 𝐵}) | |
| 4 | 3 | eleq1d 2814 | . . 3 ⊢ (𝑥 = {𝐴, 𝐵} → (∩ 𝑥 ∈ 𝑆 ↔ ∩ {𝐴, 𝐵} ∈ 𝑆)) |
| 5 | ispisys.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 6 | 5 | ispisys2 34150 | . . . . 5 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆)) |
| 7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑆 ∈ 𝑃 → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑆) |
| 9 | prelpwi 5410 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) | |
| 10 | 9 | 3adant1 1130 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆) |
| 11 | prfi 9281 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ Fin) |
| 13 | 10, 12 | elind 4166 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ (𝒫 𝑆 ∩ Fin)) |
| 14 | prnzg 4745 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → {𝐴, 𝐵} ≠ ∅) | |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ≠ ∅) |
| 16 | 15 | neneqd 2931 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} = ∅) |
| 17 | elsni 4609 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ {∅} → {𝐴, 𝐵} = ∅) | |
| 18 | 16, 17 | nsyl 140 | . . . 4 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ {𝐴, 𝐵} ∈ {∅}) |
| 19 | 13, 18 | eldifd 3928 | . . 3 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {𝐴, 𝐵} ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) |
| 20 | 4, 8, 19 | rspcdva 3592 | . 2 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∩ {𝐴, 𝐵} ∈ 𝑆) |
| 21 | 2, 20 | eqeltrrd 2830 | 1 ⊢ ((𝑆 ∈ 𝑃 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {cpr 4594 ∩ cint 4913 ‘cfv 6514 Fincfn 8921 ficfi 9368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-fin 8925 df-fi 9369 |
| This theorem is referenced by: ldgenpisyslem3 34162 |
| Copyright terms: Public domain | W3C validator |