![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreincl | Structured version Visualization version GIF version |
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreincl | β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β (π΄ β© π΅) β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4985 | . . 3 β’ ((π΄ β πΆ β§ π΅ β πΆ) β β© {π΄, π΅} = (π΄ β© π΅)) | |
2 | 1 | 3adant1 1130 | . 2 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β β© {π΄, π΅} = (π΄ β© π΅)) |
3 | simp1 1136 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β πΆ β (Mooreβπ)) | |
4 | prssi 4824 | . . . 4 β’ ((π΄ β πΆ β§ π΅ β πΆ) β {π΄, π΅} β πΆ) | |
5 | 4 | 3adant1 1130 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β {π΄, π΅} β πΆ) |
6 | prnzg 4782 | . . . 4 β’ (π΄ β πΆ β {π΄, π΅} β β ) | |
7 | 6 | 3ad2ant2 1134 | . . 3 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β {π΄, π΅} β β ) |
8 | mreintcl 17543 | . . 3 β’ ((πΆ β (Mooreβπ) β§ {π΄, π΅} β πΆ β§ {π΄, π΅} β β ) β β© {π΄, π΅} β πΆ) | |
9 | 3, 5, 7, 8 | syl3anc 1371 | . 2 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β β© {π΄, π΅} β πΆ) |
10 | 2, 9 | eqeltrrd 2834 | 1 β’ ((πΆ β (Mooreβπ) β§ π΄ β πΆ β§ π΅ β πΆ) β (π΄ β© π΅) β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β© cin 3947 β wss 3948 β c0 4322 {cpr 4630 β© cint 4950 βcfv 6543 Moorecmre 17530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-mre 17534 |
This theorem is referenced by: submacs 18744 subgacs 19077 nsgacs 19078 lsmmod 19584 subrgacs 20559 sdrgacs 20560 lssacs 20722 mreclatdemoBAD 22820 lidlincl 32810 |
Copyright terms: Public domain | W3C validator |