MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Structured version   Visualization version   GIF version

Theorem mreincl 17657
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 5005 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1 1136 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 prssi 4846 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
543adant1 1130 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
6 prnzg 4803 . . . 4 (𝐴𝐶 → {𝐴, 𝐵} ≠ ∅)
763ad2ant2 1134 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ≠ ∅)
8 mreintcl 17653 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → {𝐴, 𝐵} ∈ 𝐶)
93, 5, 7, 8syl3anc 1371 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝐶)
102, 9eqeltrrd 2845 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  c0 4352  {cpr 4650   cint 4970  cfv 6573  Moorecmre 17640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mre 17644
This theorem is referenced by:  submacs  18862  subgacs  19201  nsgacs  19202  lsmmod  19717  subrgacs  20823  sdrgacs  20824  lssacs  20988  mreclatdemoBAD  23125  lidlincl  33423
  Copyright terms: Public domain W3C validator