| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreincl | Structured version Visualization version GIF version | ||
| Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg 4962 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
| 4 | prssi 4802 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| 6 | prnzg 4759 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≠ ∅) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ≠ ∅) |
| 8 | mreintcl 17612 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → ∩ {𝐴, 𝐵} ∈ 𝐶) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} ∈ 𝐶) |
| 10 | 2, 9 | eqeltrrd 2836 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {cpr 4608 ∩ cint 4927 ‘cfv 6536 Moorecmre 17599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-mre 17603 |
| This theorem is referenced by: submacs 18810 subgacs 19149 nsgacs 19150 lsmmod 19661 subrgacs 20765 sdrgacs 20766 lssacs 20929 mreclatdemoBAD 23039 lidlincl 33450 |
| Copyright terms: Public domain | W3C validator |