| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreincl | Structured version Visualization version GIF version | ||
| Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mreincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg 4941 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
| 4 | prssi 4781 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
| 6 | prnzg 4738 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≠ ∅) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ≠ ∅) |
| 8 | mreintcl 17532 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → ∩ {𝐴, 𝐵} ∈ 𝐶) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} ∈ 𝐶) |
| 10 | 2, 9 | eqeltrrd 2829 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {cpr 4587 ∩ cint 4906 ‘cfv 6499 Moorecmre 17519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-mre 17523 |
| This theorem is referenced by: submacs 18736 subgacs 19075 nsgacs 19076 lsmmod 19589 subrgacs 20720 sdrgacs 20721 lssacs 20905 mreclatdemoBAD 23016 lidlincl 33394 |
| Copyright terms: Public domain | W3C validator |