MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Structured version   Visualization version   GIF version

Theorem mreincl 17644
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 4986 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1129 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1 1135 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 prssi 4826 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
543adant1 1129 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
6 prnzg 4783 . . . 4 (𝐴𝐶 → {𝐴, 𝐵} ≠ ∅)
763ad2ant2 1133 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ≠ ∅)
8 mreintcl 17640 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → {𝐴, 𝐵} ∈ 𝐶)
93, 5, 7, 8syl3anc 1370 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝐶)
102, 9eqeltrrd 2840 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cin 3962  wss 3963  c0 4339  {cpr 4633   cint 4951  cfv 6563  Moorecmre 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-mre 17631
This theorem is referenced by:  submacs  18853  subgacs  19192  nsgacs  19193  lsmmod  19708  subrgacs  20818  sdrgacs  20819  lssacs  20983  mreclatdemoBAD  23120  lidlincl  33438
  Copyright terms: Public domain W3C validator