Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreincl | Structured version Visualization version GIF version |
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4918 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
2 | 1 | 3adant1 1129 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
3 | simp1 1135 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
4 | prssi 4760 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
5 | 4 | 3adant1 1129 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
6 | prnzg 4720 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≠ ∅) | |
7 | 6 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ≠ ∅) |
8 | mreintcl 17315 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → ∩ {𝐴, 𝐵} ∈ 𝐶) | |
9 | 3, 5, 7, 8 | syl3anc 1370 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ∩ {𝐴, 𝐵} ∈ 𝐶) |
10 | 2, 9 | eqeltrrd 2842 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 {cpr 4569 ∩ cint 4885 ‘cfv 6432 Moorecmre 17302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-mre 17306 |
This theorem is referenced by: submacs 18476 subgacs 18800 nsgacs 18801 lsmmod 19292 subrgacs 20079 sdrgacs 20080 lssacs 20240 mreclatdemoBAD 22258 lidlincl 31616 |
Copyright terms: Public domain | W3C validator |