MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Structured version   Visualization version   GIF version

Theorem mreincl 17616
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 4962 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1 1136 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 prssi 4802 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
543adant1 1130 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
6 prnzg 4759 . . . 4 (𝐴𝐶 → {𝐴, 𝐵} ≠ ∅)
763ad2ant2 1134 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ≠ ∅)
8 mreintcl 17612 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → {𝐴, 𝐵} ∈ 𝐶)
93, 5, 7, 8syl3anc 1373 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝐶)
102, 9eqeltrrd 2836 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cin 3930  wss 3931  c0 4313  {cpr 4608   cint 4927  cfv 6536  Moorecmre 17599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-mre 17603
This theorem is referenced by:  submacs  18810  subgacs  19149  nsgacs  19150  lsmmod  19661  subrgacs  20765  sdrgacs  20766  lssacs  20929  mreclatdemoBAD  23039  lidlincl  33450
  Copyright terms: Public domain W3C validator