MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Structured version   Visualization version   GIF version

Theorem mreincl 17547
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ (𝐴 ∩ 𝐡) ∈ 𝐢)

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 4985 . . 3 ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ ∩ {𝐴, 𝐡} = (𝐴 ∩ 𝐡))
213adant1 1130 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ ∩ {𝐴, 𝐡} = (𝐴 ∩ 𝐡))
3 simp1 1136 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ 𝐢 ∈ (Mooreβ€˜π‘‹))
4 prssi 4824 . . . 4 ((𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ {𝐴, 𝐡} βŠ† 𝐢)
543adant1 1130 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ {𝐴, 𝐡} βŠ† 𝐢)
6 prnzg 4782 . . . 4 (𝐴 ∈ 𝐢 β†’ {𝐴, 𝐡} β‰  βˆ…)
763ad2ant2 1134 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ {𝐴, 𝐡} β‰  βˆ…)
8 mreintcl 17543 . . 3 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ {𝐴, 𝐡} βŠ† 𝐢 ∧ {𝐴, 𝐡} β‰  βˆ…) β†’ ∩ {𝐴, 𝐡} ∈ 𝐢)
93, 5, 7, 8syl3anc 1371 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ ∩ {𝐴, 𝐡} ∈ 𝐢)
102, 9eqeltrrd 2834 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ (𝐴 ∩ 𝐡) ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  {cpr 4630  βˆ© cint 4950  β€˜cfv 6543  Moorecmre 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-mre 17534
This theorem is referenced by:  submacs  18744  subgacs  19077  nsgacs  19078  lsmmod  19584  subrgacs  20559  sdrgacs  20560  lssacs  20722  mreclatdemoBAD  22820  lidlincl  32810
  Copyright terms: Public domain W3C validator