MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssincl Structured version   Visualization version   GIF version

Theorem lssincl 20963
Description: The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssincl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)

Proof of Theorem lssincl
StepHypRef Expression
1 intprg 4981 . . 3 ((𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} = (𝑇𝑈))
213adant1 1131 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} = (𝑇𝑈))
3 simp1 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ LMod)
4 prssi 4821 . . . 4 ((𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} ⊆ 𝑆)
543adant1 1131 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} ⊆ 𝑆)
6 prnzg 4778 . . . 4 (𝑇𝑆 → {𝑇, 𝑈} ≠ ∅)
763ad2ant2 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} ≠ ∅)
8 lssintcl.s . . . 4 𝑆 = (LSubSp‘𝑊)
98lssintcl 20962 . . 3 ((𝑊 ∈ LMod ∧ {𝑇, 𝑈} ⊆ 𝑆 ∧ {𝑇, 𝑈} ≠ ∅) → {𝑇, 𝑈} ∈ 𝑆)
103, 5, 7, 9syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → {𝑇, 𝑈} ∈ 𝑆)
112, 10eqeltrrd 2842 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cin 3950  wss 3951  c0 4333  {cpr 4628   cint 4946  cfv 6561  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  ocvin  21692  lshpdisj  38988  lcvexchlem2  39036  lcvexchlem4  39038  lcvexchlem5  39039  lcvp  39041  lsatcvat3  39053  dihmeetlem13N  41321  dochnoncon  41393  dochexmidlem5  41466  lclkrlem2f  41514  lcfrlem25  41569  mapdincl  41663  mapdin  41664  lmhmlnmsplit  43099
  Copyright terms: Public domain W3C validator