MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incld Structured version   Visualization version   GIF version

Theorem incld 22930
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
incld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem incld
StepHypRef Expression
1 intprg 4945 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} = (𝐴𝐵))
2 prnzg 4742 . . 3 (𝐴 ∈ (Clsd‘𝐽) → {𝐴, 𝐵} ≠ ∅)
3 prssi 4785 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ⊆ (Clsd‘𝐽))
4 intcld 22927 . . 3 (({𝐴, 𝐵} ≠ ∅ ∧ {𝐴, 𝐵} ⊆ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
52, 3, 4syl2an2r 685 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
61, 5eqeltrrd 2829 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  cin 3913  wss 3914  c0 4296  {cpr 4591   cint 4910  cfv 6511  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-top 22781  df-cld 22906
This theorem is referenced by:  riincld  22931  restcldr  23061  ordtcld3  23086  clsocv  25150  mblfinlem3  37653  mblfinlem4  37654  iscnrm3rlem5  48932
  Copyright terms: Public domain W3C validator