MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incld Structured version   Visualization version   GIF version

Theorem incld 23064
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
incld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem incld
StepHypRef Expression
1 intprg 5005 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} = (𝐴𝐵))
2 prnzg 4803 . . 3 (𝐴 ∈ (Clsd‘𝐽) → {𝐴, 𝐵} ≠ ∅)
3 prssi 4846 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ⊆ (Clsd‘𝐽))
4 intcld 23061 . . 3 (({𝐴, 𝐵} ≠ ∅ ∧ {𝐴, 𝐵} ⊆ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
52, 3, 4syl2an2r 684 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
61, 5eqeltrrd 2845 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946  cin 3975  wss 3976  c0 4352  {cpr 4650   cint 4970  cfv 6568  Clsdccld 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-iota 6520  df-fun 6570  df-fn 6571  df-fv 6576  df-top 22913  df-cld 23040
This theorem is referenced by:  riincld  23065  restcldr  23195  ordtcld3  23220  clsocv  25295  mblfinlem3  37611  mblfinlem4  37612  iscnrm3rlem5  48613
  Copyright terms: Public domain W3C validator