MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incld Structured version   Visualization version   GIF version

Theorem incld 22936
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
incld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem incld
StepHypRef Expression
1 intprg 4947 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} = (𝐴𝐵))
2 prnzg 4744 . . 3 (𝐴 ∈ (Clsd‘𝐽) → {𝐴, 𝐵} ≠ ∅)
3 prssi 4787 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ⊆ (Clsd‘𝐽))
4 intcld 22933 . . 3 (({𝐴, 𝐵} ≠ ∅ ∧ {𝐴, 𝐵} ⊆ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
52, 3, 4syl2an2r 685 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ∈ (Clsd‘𝐽))
61, 5eqeltrrd 2830 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  cin 3915  wss 3916  c0 4298  {cpr 4593   cint 4912  cfv 6513  Clsdccld 22909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521  df-top 22787  df-cld 22912
This theorem is referenced by:  riincld  22937  restcldr  23067  ordtcld3  23092  clsocv  25156  mblfinlem3  37648  mblfinlem4  37649  iscnrm3rlem5  48920
  Copyright terms: Public domain W3C validator