![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > incld | Structured version Visualization version GIF version |
Description: The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
incld | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intprg 4985 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
2 | prnzg 4782 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → {𝐴, 𝐵} ≠ ∅) | |
3 | prssi 4824 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → {𝐴, 𝐵} ⊆ (Clsd‘𝐽)) | |
4 | intcld 22551 | . . 3 ⊢ (({𝐴, 𝐵} ≠ ∅ ∧ {𝐴, 𝐵} ⊆ (Clsd‘𝐽)) → ∩ {𝐴, 𝐵} ∈ (Clsd‘𝐽)) | |
5 | 2, 3, 4 | syl2an2r 683 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ∩ {𝐴, 𝐵} ∈ (Clsd‘𝐽)) |
6 | 1, 5 | eqeltrrd 2834 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {cpr 4630 ∩ cint 4950 ‘cfv 6543 Clsdccld 22527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-top 22403 df-cld 22530 |
This theorem is referenced by: riincld 22555 restcldr 22685 ordtcld3 22710 clsocv 24774 mblfinlem3 36619 mblfinlem4 36620 iscnrm3rlem5 47661 |
Copyright terms: Public domain | W3C validator |