| Step | Hyp | Ref
| Expression |
| 1 | | ackbij.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 2 | 1 | ackbij1lem8 10245 |
. 2
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| 3 | | pweq 4594 |
. . . . 5
⊢ (𝑎 = ∅ → 𝒫
𝑎 = 𝒫
∅) |
| 4 | 3 | fveq2d 6885 |
. . . 4
⊢ (𝑎 = ∅ →
(card‘𝒫 𝑎) =
(card‘𝒫 ∅)) |
| 5 | | fveq2 6881 |
. . . . 5
⊢ (𝑎 = ∅ → (𝐹‘𝑎) = (𝐹‘∅)) |
| 6 | | suceq 6424 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘∅) → suc (𝐹‘𝑎) = suc (𝐹‘∅)) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝑎 = ∅ → suc (𝐹‘𝑎) = suc (𝐹‘∅)) |
| 8 | 4, 7 | eqeq12d 2752 |
. . 3
⊢ (𝑎 = ∅ →
((card‘𝒫 𝑎) =
suc (𝐹‘𝑎) ↔ (card‘𝒫
∅) = suc (𝐹‘∅))) |
| 9 | | pweq 4594 |
. . . . 5
⊢ (𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏) |
| 10 | 9 | fveq2d 6885 |
. . . 4
⊢ (𝑎 = 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 𝑏)) |
| 11 | | fveq2 6881 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
| 12 | | suceq 6424 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → suc (𝐹‘𝑎) = suc (𝐹‘𝑏)) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝑎 = 𝑏 → suc (𝐹‘𝑎) = suc (𝐹‘𝑏)) |
| 14 | 10, 13 | eqeq12d 2752 |
. . 3
⊢ (𝑎 = 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 𝑏) = suc (𝐹‘𝑏))) |
| 15 | | pweq 4594 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏) |
| 16 | 15 | fveq2d 6885 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 suc
𝑏)) |
| 17 | | fveq2 6881 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (𝐹‘𝑎) = (𝐹‘suc 𝑏)) |
| 18 | | suceq 6424 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘suc 𝑏) → suc (𝐹‘𝑎) = suc (𝐹‘suc 𝑏)) |
| 19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝑎 = suc 𝑏 → suc (𝐹‘𝑎) = suc (𝐹‘suc 𝑏)) |
| 20 | 16, 19 | eqeq12d 2752 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏))) |
| 21 | | pweq 4594 |
. . . . 5
⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) |
| 22 | 21 | fveq2d 6885 |
. . . 4
⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
| 23 | | fveq2 6881 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
| 24 | | suceq 6424 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘𝐴) → suc (𝐹‘𝑎) = suc (𝐹‘𝐴)) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝑎 = 𝐴 → suc (𝐹‘𝑎) = suc (𝐹‘𝐴)) |
| 26 | 22, 25 | eqeq12d 2752 |
. . 3
⊢ (𝑎 = 𝐴 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 𝐴) = suc (𝐹‘𝐴))) |
| 27 | | df-1o 8485 |
. . . 4
⊢
1o = suc ∅ |
| 28 | | pw0 4793 |
. . . . . 6
⊢ 𝒫
∅ = {∅} |
| 29 | 28 | fveq2i 6884 |
. . . . 5
⊢
(card‘𝒫 ∅) = (card‘{∅}) |
| 30 | | 0ex 5282 |
. . . . . 6
⊢ ∅
∈ V |
| 31 | | cardsn 9988 |
. . . . . 6
⊢ (∅
∈ V → (card‘{∅}) = 1o) |
| 32 | 30, 31 | ax-mp 5 |
. . . . 5
⊢
(card‘{∅}) = 1o |
| 33 | 29, 32 | eqtri 2759 |
. . . 4
⊢
(card‘𝒫 ∅) = 1o |
| 34 | 1 | ackbij1lem13 10250 |
. . . . 5
⊢ (𝐹‘∅) =
∅ |
| 35 | | suceq 6424 |
. . . . 5
⊢ ((𝐹‘∅) = ∅ →
suc (𝐹‘∅) = suc
∅) |
| 36 | 34, 35 | ax-mp 5 |
. . . 4
⊢ suc
(𝐹‘∅) = suc
∅ |
| 37 | 27, 33, 36 | 3eqtr4i 2769 |
. . 3
⊢
(card‘𝒫 ∅) = suc (𝐹‘∅) |
| 38 | | oveq2 7418 |
. . . . . 6
⊢
((card‘𝒫 𝑏) = suc (𝐹‘𝑏) → ((card‘𝒫 𝑏) +o
(card‘𝒫 𝑏)) =
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏))) |
| 39 | 38 | adantl 481 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((card‘𝒫
𝑏) +o
(card‘𝒫 𝑏)) =
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏))) |
| 40 | | ackbij1lem5 10242 |
. . . . . 6
⊢ (𝑏 ∈ ω →
(card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏))) |
| 41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
suc 𝑏) =
((card‘𝒫 𝑏)
+o (card‘𝒫 𝑏))) |
| 42 | | df-suc 6363 |
. . . . . . . . . 10
⊢ suc 𝑏 = (𝑏 ∪ {𝑏}) |
| 43 | 42 | equncomi 4140 |
. . . . . . . . 9
⊢ suc 𝑏 = ({𝑏} ∪ 𝑏) |
| 44 | 43 | fveq2i 6884 |
. . . . . . . 8
⊢ (𝐹‘suc 𝑏) = (𝐹‘({𝑏} ∪ 𝑏)) |
| 45 | | ackbij1lem4 10241 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω
∩ Fin)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → {𝑏} ∈ (𝒫 ω ∩
Fin)) |
| 47 | | ackbij1lem3 10240 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → 𝑏 ∈ (𝒫 ω ∩
Fin)) |
| 48 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → 𝑏 ∈ (𝒫 ω ∩
Fin)) |
| 49 | | incom 4189 |
. . . . . . . . . . . 12
⊢ ({𝑏} ∩ 𝑏) = (𝑏 ∩ {𝑏}) |
| 50 | | nnord 7874 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → Ord 𝑏) |
| 51 | | orddisj 6395 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑏 → (𝑏 ∩ {𝑏}) = ∅) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅) |
| 53 | 49, 52 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → ({𝑏} ∩ 𝑏) = ∅) |
| 54 | 53 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ({𝑏} ∩ 𝑏) = ∅) |
| 55 | 1 | ackbij1lem9 10246 |
. . . . . . . . . 10
⊢ (({𝑏} ∈ (𝒫 ω
∩ Fin) ∧ 𝑏 ∈
(𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ 𝑏) = ∅) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘𝑏))) |
| 56 | 46, 48, 54, 55 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘𝑏))) |
| 57 | 1 | ackbij1lem8 10245 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → (𝐹‘{𝑏}) = (card‘𝒫 𝑏)) |
| 58 | 57 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘{𝑏}) = (card‘𝒫 𝑏)) |
| 59 | 58 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((𝐹‘{𝑏}) +o (𝐹‘𝑏)) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 60 | 56, 59 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 61 | 44, 60 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 62 | | suceq 6424 |
. . . . . . 7
⊢ ((𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 64 | | nnfi 9186 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω → 𝑏 ∈ Fin) |
| 65 | | pwfi 9334 |
. . . . . . . . . 10
⊢ (𝑏 ∈ Fin ↔ 𝒫
𝑏 ∈
Fin) |
| 66 | 64, 65 | sylib 218 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → 𝒫
𝑏 ∈
Fin) |
| 67 | 66 | adantr 480 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → 𝒫 𝑏 ∈ Fin) |
| 68 | | ficardom 9980 |
. . . . . . . 8
⊢
(𝒫 𝑏 ∈
Fin → (card‘𝒫 𝑏) ∈ ω) |
| 69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
𝑏) ∈
ω) |
| 70 | 1 | ackbij1lem10 10247 |
. . . . . . . . 9
⊢ 𝐹:(𝒫 ω ∩
Fin)⟶ω |
| 71 | 70 | ffvelcdmi 7078 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝑏) ∈
ω) |
| 72 | 48, 71 | syl 17 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘𝑏) ∈ ω) |
| 73 | | nnasuc 8623 |
. . . . . . 7
⊢
(((card‘𝒫 𝑏) ∈ ω ∧ (𝐹‘𝑏) ∈ ω) →
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 74 | 69, 72, 73 | syl2anc 584 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((card‘𝒫
𝑏) +o suc (𝐹‘𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
| 75 | 63, 74 | eqtr4d 2774 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o suc (𝐹‘𝑏))) |
| 76 | 39, 41, 75 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
suc 𝑏) = suc (𝐹‘suc 𝑏)) |
| 77 | 76 | ex 412 |
. . 3
⊢ (𝑏 ∈ ω →
((card‘𝒫 𝑏) =
suc (𝐹‘𝑏) → (card‘𝒫
suc 𝑏) = suc (𝐹‘suc 𝑏))) |
| 78 | 8, 14, 20, 26, 37, 77 | finds 7897 |
. 2
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴) =
suc (𝐹‘𝐴)) |
| 79 | 2, 78 | eqtrd 2771 |
1
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹‘𝐴)) |