MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem14 Structured version   Visualization version   GIF version

Theorem ackbij1lem14 10161
Description: Lemma for ackbij1 10166. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem14 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem8 10155 . 2 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
3 pweq 4573 . . . . 5 (𝑎 = ∅ → 𝒫 𝑎 = 𝒫 ∅)
43fveq2d 6844 . . . 4 (𝑎 = ∅ → (card‘𝒫 𝑎) = (card‘𝒫 ∅))
5 fveq2 6840 . . . . 5 (𝑎 = ∅ → (𝐹𝑎) = (𝐹‘∅))
6 suceq 6388 . . . . 5 ((𝐹𝑎) = (𝐹‘∅) → suc (𝐹𝑎) = suc (𝐹‘∅))
75, 6syl 17 . . . 4 (𝑎 = ∅ → suc (𝐹𝑎) = suc (𝐹‘∅))
84, 7eqeq12d 2745 . . 3 (𝑎 = ∅ → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 ∅) = suc (𝐹‘∅)))
9 pweq 4573 . . . . 5 (𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏)
109fveq2d 6844 . . . 4 (𝑎 = 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 𝑏))
11 fveq2 6840 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
12 suceq 6388 . . . . 5 ((𝐹𝑎) = (𝐹𝑏) → suc (𝐹𝑎) = suc (𝐹𝑏))
1311, 12syl 17 . . . 4 (𝑎 = 𝑏 → suc (𝐹𝑎) = suc (𝐹𝑏))
1410, 13eqeq12d 2745 . . 3 (𝑎 = 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 𝑏) = suc (𝐹𝑏)))
15 pweq 4573 . . . . 5 (𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏)
1615fveq2d 6844 . . . 4 (𝑎 = suc 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 suc 𝑏))
17 fveq2 6840 . . . . 5 (𝑎 = suc 𝑏 → (𝐹𝑎) = (𝐹‘suc 𝑏))
18 suceq 6388 . . . . 5 ((𝐹𝑎) = (𝐹‘suc 𝑏) → suc (𝐹𝑎) = suc (𝐹‘suc 𝑏))
1917, 18syl 17 . . . 4 (𝑎 = suc 𝑏 → suc (𝐹𝑎) = suc (𝐹‘suc 𝑏))
2016, 19eqeq12d 2745 . . 3 (𝑎 = suc 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏)))
21 pweq 4573 . . . . 5 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
2221fveq2d 6844 . . . 4 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
23 fveq2 6840 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
24 suceq 6388 . . . . 5 ((𝐹𝑎) = (𝐹𝐴) → suc (𝐹𝑎) = suc (𝐹𝐴))
2523, 24syl 17 . . . 4 (𝑎 = 𝐴 → suc (𝐹𝑎) = suc (𝐹𝐴))
2622, 25eqeq12d 2745 . . 3 (𝑎 = 𝐴 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 𝐴) = suc (𝐹𝐴)))
27 df-1o 8411 . . . 4 1o = suc ∅
28 pw0 4772 . . . . . 6 𝒫 ∅ = {∅}
2928fveq2i 6843 . . . . 5 (card‘𝒫 ∅) = (card‘{∅})
30 0ex 5257 . . . . . 6 ∅ ∈ V
31 cardsn 9898 . . . . . 6 (∅ ∈ V → (card‘{∅}) = 1o)
3230, 31ax-mp 5 . . . . 5 (card‘{∅}) = 1o
3329, 32eqtri 2752 . . . 4 (card‘𝒫 ∅) = 1o
341ackbij1lem13 10160 . . . . 5 (𝐹‘∅) = ∅
35 suceq 6388 . . . . 5 ((𝐹‘∅) = ∅ → suc (𝐹‘∅) = suc ∅)
3634, 35ax-mp 5 . . . 4 suc (𝐹‘∅) = suc ∅
3727, 33, 363eqtr4i 2762 . . 3 (card‘𝒫 ∅) = suc (𝐹‘∅)
38 oveq2 7377 . . . . . 6 ((card‘𝒫 𝑏) = suc (𝐹𝑏) → ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏)) = ((card‘𝒫 𝑏) +o suc (𝐹𝑏)))
3938adantl 481 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏)) = ((card‘𝒫 𝑏) +o suc (𝐹𝑏)))
40 ackbij1lem5 10152 . . . . . 6 (𝑏 ∈ ω → (card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏)))
4140adantr 480 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏)))
42 df-suc 6326 . . . . . . . . . 10 suc 𝑏 = (𝑏 ∪ {𝑏})
4342equncomi 4119 . . . . . . . . 9 suc 𝑏 = ({𝑏} ∪ 𝑏)
4443fveq2i 6843 . . . . . . . 8 (𝐹‘suc 𝑏) = (𝐹‘({𝑏} ∪ 𝑏))
45 ackbij1lem4 10151 . . . . . . . . . . 11 (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω ∩ Fin))
4645adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → {𝑏} ∈ (𝒫 ω ∩ Fin))
47 ackbij1lem3 10150 . . . . . . . . . . 11 (𝑏 ∈ ω → 𝑏 ∈ (𝒫 ω ∩ Fin))
4847adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → 𝑏 ∈ (𝒫 ω ∩ Fin))
49 incom 4168 . . . . . . . . . . . 12 ({𝑏} ∩ 𝑏) = (𝑏 ∩ {𝑏})
50 nnord 7830 . . . . . . . . . . . . 13 (𝑏 ∈ ω → Ord 𝑏)
51 orddisj 6358 . . . . . . . . . . . . 13 (Ord 𝑏 → (𝑏 ∩ {𝑏}) = ∅)
5250, 51syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅)
5349, 52eqtrid 2776 . . . . . . . . . . 11 (𝑏 ∈ ω → ({𝑏} ∩ 𝑏) = ∅)
5453adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ({𝑏} ∩ 𝑏) = ∅)
551ackbij1lem9 10156 . . . . . . . . . 10 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ 𝑏) = ∅) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹𝑏)))
5646, 48, 54, 55syl3anc 1373 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹𝑏)))
571ackbij1lem8 10155 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝐹‘{𝑏}) = (card‘𝒫 𝑏))
5857adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘{𝑏}) = (card‘𝒫 𝑏))
5958oveq1d 7384 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((𝐹‘{𝑏}) +o (𝐹𝑏)) = ((card‘𝒫 𝑏) +o (𝐹𝑏)))
6056, 59eqtrd 2764 . . . . . . . 8 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((card‘𝒫 𝑏) +o (𝐹𝑏)))
6144, 60eqtrid 2776 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹𝑏)))
62 suceq 6388 . . . . . . 7 ((𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹𝑏)))
6361, 62syl 17 . . . . . 6 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹𝑏)))
64 nnfi 9108 . . . . . . . . . 10 (𝑏 ∈ ω → 𝑏 ∈ Fin)
65 pwfi 9244 . . . . . . . . . 10 (𝑏 ∈ Fin ↔ 𝒫 𝑏 ∈ Fin)
6664, 65sylib 218 . . . . . . . . 9 (𝑏 ∈ ω → 𝒫 𝑏 ∈ Fin)
6766adantr 480 . . . . . . . 8 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → 𝒫 𝑏 ∈ Fin)
68 ficardom 9890 . . . . . . . 8 (𝒫 𝑏 ∈ Fin → (card‘𝒫 𝑏) ∈ ω)
6967, 68syl 17 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 𝑏) ∈ ω)
701ackbij1lem10 10157 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
7170ffvelcdmi 7037 . . . . . . . 8 (𝑏 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑏) ∈ ω)
7248, 71syl 17 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹𝑏) ∈ ω)
73 nnasuc 8547 . . . . . . 7 (((card‘𝒫 𝑏) ∈ ω ∧ (𝐹𝑏) ∈ ω) → ((card‘𝒫 𝑏) +o suc (𝐹𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹𝑏)))
7469, 72, 73syl2anc 584 . . . . . 6 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((card‘𝒫 𝑏) +o suc (𝐹𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹𝑏)))
7563, 74eqtr4d 2767 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o suc (𝐹𝑏)))
7639, 41, 753eqtr4d 2774 . . . 4 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏))
7776ex 412 . . 3 (𝑏 ∈ ω → ((card‘𝒫 𝑏) = suc (𝐹𝑏) → (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏)))
788, 14, 20, 26, 37, 77finds 7852 . 2 (𝐴 ∈ ω → (card‘𝒫 𝐴) = suc (𝐹𝐴))
792, 78eqtrd 2764 1 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  cin 3910  c0 4292  𝒫 cpw 4559  {csn 4585   ciun 4951  cmpt 5183   × cxp 5629  Ord word 6319  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  1oc1o 8404   +o coa 8408  Fincfn 8895  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868
This theorem is referenced by:  ackbij1lem15  10162  ackbij1lem18  10165  ackbij1b  10167
  Copyright terms: Public domain W3C validator