Step | Hyp | Ref
| Expression |
1 | | ackbij.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
2 | 1 | ackbij1lem8 9914 |
. 2
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
3 | | pweq 4546 |
. . . . 5
⊢ (𝑎 = ∅ → 𝒫
𝑎 = 𝒫
∅) |
4 | 3 | fveq2d 6760 |
. . . 4
⊢ (𝑎 = ∅ →
(card‘𝒫 𝑎) =
(card‘𝒫 ∅)) |
5 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = ∅ → (𝐹‘𝑎) = (𝐹‘∅)) |
6 | | suceq 6316 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘∅) → suc (𝐹‘𝑎) = suc (𝐹‘∅)) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝑎 = ∅ → suc (𝐹‘𝑎) = suc (𝐹‘∅)) |
8 | 4, 7 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = ∅ →
((card‘𝒫 𝑎) =
suc (𝐹‘𝑎) ↔ (card‘𝒫
∅) = suc (𝐹‘∅))) |
9 | | pweq 4546 |
. . . . 5
⊢ (𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏) |
10 | 9 | fveq2d 6760 |
. . . 4
⊢ (𝑎 = 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 𝑏)) |
11 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
12 | | suceq 6316 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → suc (𝐹‘𝑎) = suc (𝐹‘𝑏)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝑎 = 𝑏 → suc (𝐹‘𝑎) = suc (𝐹‘𝑏)) |
14 | 10, 13 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 𝑏) = suc (𝐹‘𝑏))) |
15 | | pweq 4546 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏) |
16 | 15 | fveq2d 6760 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 suc
𝑏)) |
17 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (𝐹‘𝑎) = (𝐹‘suc 𝑏)) |
18 | | suceq 6316 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘suc 𝑏) → suc (𝐹‘𝑎) = suc (𝐹‘suc 𝑏)) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝑎 = suc 𝑏 → suc (𝐹‘𝑎) = suc (𝐹‘suc 𝑏)) |
20 | 16, 19 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏))) |
21 | | pweq 4546 |
. . . . 5
⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) |
22 | 21 | fveq2d 6760 |
. . . 4
⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
23 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
24 | | suceq 6316 |
. . . . 5
⊢ ((𝐹‘𝑎) = (𝐹‘𝐴) → suc (𝐹‘𝑎) = suc (𝐹‘𝐴)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝑎 = 𝐴 → suc (𝐹‘𝑎) = suc (𝐹‘𝐴)) |
26 | 22, 25 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = 𝐴 → ((card‘𝒫 𝑎) = suc (𝐹‘𝑎) ↔ (card‘𝒫 𝐴) = suc (𝐹‘𝐴))) |
27 | | df-1o 8267 |
. . . 4
⊢
1o = suc ∅ |
28 | | pw0 4742 |
. . . . . 6
⊢ 𝒫
∅ = {∅} |
29 | 28 | fveq2i 6759 |
. . . . 5
⊢
(card‘𝒫 ∅) = (card‘{∅}) |
30 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
31 | | cardsn 9658 |
. . . . . 6
⊢ (∅
∈ V → (card‘{∅}) = 1o) |
32 | 30, 31 | ax-mp 5 |
. . . . 5
⊢
(card‘{∅}) = 1o |
33 | 29, 32 | eqtri 2766 |
. . . 4
⊢
(card‘𝒫 ∅) = 1o |
34 | 1 | ackbij1lem13 9919 |
. . . . 5
⊢ (𝐹‘∅) =
∅ |
35 | | suceq 6316 |
. . . . 5
⊢ ((𝐹‘∅) = ∅ →
suc (𝐹‘∅) = suc
∅) |
36 | 34, 35 | ax-mp 5 |
. . . 4
⊢ suc
(𝐹‘∅) = suc
∅ |
37 | 27, 33, 36 | 3eqtr4i 2776 |
. . 3
⊢
(card‘𝒫 ∅) = suc (𝐹‘∅) |
38 | | oveq2 7263 |
. . . . . 6
⊢
((card‘𝒫 𝑏) = suc (𝐹‘𝑏) → ((card‘𝒫 𝑏) +o
(card‘𝒫 𝑏)) =
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏))) |
39 | 38 | adantl 481 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((card‘𝒫
𝑏) +o
(card‘𝒫 𝑏)) =
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏))) |
40 | | ackbij1lem5 9911 |
. . . . . 6
⊢ (𝑏 ∈ ω →
(card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +o (card‘𝒫 𝑏))) |
41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
suc 𝑏) =
((card‘𝒫 𝑏)
+o (card‘𝒫 𝑏))) |
42 | | df-suc 6257 |
. . . . . . . . . 10
⊢ suc 𝑏 = (𝑏 ∪ {𝑏}) |
43 | 42 | equncomi 4085 |
. . . . . . . . 9
⊢ suc 𝑏 = ({𝑏} ∪ 𝑏) |
44 | 43 | fveq2i 6759 |
. . . . . . . 8
⊢ (𝐹‘suc 𝑏) = (𝐹‘({𝑏} ∪ 𝑏)) |
45 | | ackbij1lem4 9910 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω
∩ Fin)) |
46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → {𝑏} ∈ (𝒫 ω ∩
Fin)) |
47 | | ackbij1lem3 9909 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → 𝑏 ∈ (𝒫 ω ∩
Fin)) |
48 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → 𝑏 ∈ (𝒫 ω ∩
Fin)) |
49 | | incom 4131 |
. . . . . . . . . . . 12
⊢ ({𝑏} ∩ 𝑏) = (𝑏 ∩ {𝑏}) |
50 | | nnord 7695 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → Ord 𝑏) |
51 | | orddisj 6289 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑏 → (𝑏 ∩ {𝑏}) = ∅) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅) |
53 | 49, 52 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → ({𝑏} ∩ 𝑏) = ∅) |
54 | 53 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ({𝑏} ∩ 𝑏) = ∅) |
55 | 1 | ackbij1lem9 9915 |
. . . . . . . . . 10
⊢ (({𝑏} ∈ (𝒫 ω
∩ Fin) ∧ 𝑏 ∈
(𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ 𝑏) = ∅) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘𝑏))) |
56 | 46, 48, 54, 55 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘𝑏))) |
57 | 1 | ackbij1lem8 9914 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ω → (𝐹‘{𝑏}) = (card‘𝒫 𝑏)) |
58 | 57 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘{𝑏}) = (card‘𝒫 𝑏)) |
59 | 58 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((𝐹‘{𝑏}) +o (𝐹‘𝑏)) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
60 | 56, 59 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
61 | 44, 60 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
62 | | suceq 6316 |
. . . . . . 7
⊢ ((𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
64 | | nnfi 8912 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω → 𝑏 ∈ Fin) |
65 | | pwfi 8923 |
. . . . . . . . . 10
⊢ (𝑏 ∈ Fin ↔ 𝒫
𝑏 ∈
Fin) |
66 | 64, 65 | sylib 217 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → 𝒫
𝑏 ∈
Fin) |
67 | 66 | adantr 480 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → 𝒫 𝑏 ∈ Fin) |
68 | | ficardom 9650 |
. . . . . . . 8
⊢
(𝒫 𝑏 ∈
Fin → (card‘𝒫 𝑏) ∈ ω) |
69 | 67, 68 | syl 17 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
𝑏) ∈
ω) |
70 | 1 | ackbij1lem10 9916 |
. . . . . . . . 9
⊢ 𝐹:(𝒫 ω ∩
Fin)⟶ω |
71 | 70 | ffvelrni 6942 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝑏) ∈
ω) |
72 | 48, 71 | syl 17 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (𝐹‘𝑏) ∈ ω) |
73 | | nnasuc 8399 |
. . . . . . 7
⊢
(((card‘𝒫 𝑏) ∈ ω ∧ (𝐹‘𝑏) ∈ ω) →
((card‘𝒫 𝑏)
+o suc (𝐹‘𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
74 | 69, 72, 73 | syl2anc 583 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → ((card‘𝒫
𝑏) +o suc (𝐹‘𝑏)) = suc ((card‘𝒫 𝑏) +o (𝐹‘𝑏))) |
75 | 63, 74 | eqtr4d 2781 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → suc (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +o suc (𝐹‘𝑏))) |
76 | 39, 41, 75 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝑏 ∈ ω ∧
(card‘𝒫 𝑏) =
suc (𝐹‘𝑏)) → (card‘𝒫
suc 𝑏) = suc (𝐹‘suc 𝑏)) |
77 | 76 | ex 412 |
. . 3
⊢ (𝑏 ∈ ω →
((card‘𝒫 𝑏) =
suc (𝐹‘𝑏) → (card‘𝒫
suc 𝑏) = suc (𝐹‘suc 𝑏))) |
78 | 8, 14, 20, 26, 37, 77 | finds 7719 |
. 2
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴) =
suc (𝐹‘𝐴)) |
79 | 2, 78 | eqtrd 2778 |
1
⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹‘𝐴)) |