MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vb Structured version   Visualization version   GIF version

Theorem uhgr0vb 29052
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0vb ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem uhgr0vb
StepHypRef Expression
1 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 29042 . . 3 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 pweq 4563 . . . . . . . 8 ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅)
54difeq1d 4074 . . . . . . 7 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅}))
6 pw0 4763 . . . . . . . . 9 𝒫 ∅ = {∅}
76difeq1i 4071 . . . . . . . 8 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
8 difid 4325 . . . . . . . 8 ({∅} ∖ {∅}) = ∅
97, 8eqtri 2756 . . . . . . 7 (𝒫 ∅ ∖ {∅}) = ∅
105, 9eqtrdi 2784 . . . . . 6 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1110adantl 481 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1211feq3d 6641 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
13 f00 6710 . . . . 5 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
1413simplbi 497 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
1512, 14biimtrdi 253 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅))
163, 15syl5 34 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
17 simpl 482 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
18 simpr 484 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
1917, 18uhgr0e 29051 . . . 4 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph)
2019ex 412 . . 3 (𝐺𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2120adantr 480 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2216, 21impbid 212 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  c0 4282  𝒫 cpw 4549  {csn 4575  dom cdm 5619  wf 6482  cfv 6486  Vtxcvtx 28976  iEdgciedg 28977  UHGraphcuhgr 29036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-uhgr 29038
This theorem is referenced by:  usgr0vb  29217  uhgr0v0e  29218  0uhgrsubgr  29259  finsumvtxdg2size  29531  0uhgrrusgr  29559  frgr0v  30244  frgruhgr0v  30246
  Copyright terms: Public domain W3C validator