Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgr0vb | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0vb | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 27335 | . . 3 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | pweq 4546 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅) | |
5 | 4 | difeq1d 4052 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅})) |
6 | pw0 4742 | . . . . . . . . 9 ⊢ 𝒫 ∅ = {∅} | |
7 | 6 | difeq1i 4049 | . . . . . . . 8 ⊢ (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅}) |
8 | difid 4301 | . . . . . . . 8 ⊢ ({∅} ∖ {∅}) = ∅ | |
9 | 7, 8 | eqtri 2766 | . . . . . . 7 ⊢ (𝒫 ∅ ∖ {∅}) = ∅ |
10 | 5, 9 | eqtrdi 2795 | . . . . . 6 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
12 | 11 | feq3d 6571 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)) |
13 | f00 6640 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅)) | |
14 | 13 | simplbi 497 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅) |
15 | 12, 14 | syl6bi 252 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅)) |
16 | 3, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
17 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
18 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
19 | 17, 18 | uhgr0e 27344 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph) |
20 | 19 | ex 412 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
21 | 20 | adantr 480 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
22 | 16, 21 | impbid 211 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 UHGraphcuhgr 27329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-uhgr 27331 |
This theorem is referenced by: usgr0vb 27507 uhgr0v0e 27508 0uhgrsubgr 27549 finsumvtxdg2size 27820 0uhgrrusgr 27848 frgr0v 28527 frgruhgr0v 28529 |
Copyright terms: Public domain | W3C validator |