![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0vb | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0vb | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2772 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 26544 | . . 3 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | pweq 4419 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅) | |
5 | 4 | difeq1d 3982 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅})) |
6 | pw0 4613 | . . . . . . . . 9 ⊢ 𝒫 ∅ = {∅} | |
7 | 6 | difeq1i 3979 | . . . . . . . 8 ⊢ (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅}) |
8 | difid 4210 | . . . . . . . 8 ⊢ ({∅} ∖ {∅}) = ∅ | |
9 | 7, 8 | eqtri 2796 | . . . . . . 7 ⊢ (𝒫 ∅ ∖ {∅}) = ∅ |
10 | 5, 9 | syl6eq 2824 | . . . . . 6 ⊢ ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
11 | 10 | adantl 474 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅) |
12 | 11 | feq3d 6325 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)) |
13 | f00 6384 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅)) | |
14 | 13 | simplbi 490 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅) |
15 | 12, 14 | syl6bi 245 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅)) |
16 | 3, 15 | syl5 34 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
17 | simpl 475 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
18 | simpr 477 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
19 | 17, 18 | uhgr0e 26553 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph) |
20 | 19 | ex 405 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
21 | 20 | adantr 473 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
22 | 16, 21 | impbid 204 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∖ cdif 3820 ∅c0 4172 𝒫 cpw 4416 {csn 4435 dom cdm 5401 ⟶wf 6178 ‘cfv 6182 Vtxcvtx 26478 iEdgciedg 26479 UHGraphcuhgr 26538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-fv 6190 df-uhgr 26540 |
This theorem is referenced by: usgr0vb 26716 uhgr0v0e 26717 0uhgrsubgr 26758 finsumvtxdg2size 27029 0uhgrrusgr 27057 frgr0v 27789 frgruhgr0v 27791 |
Copyright terms: Public domain | W3C validator |