MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vb Structured version   Visualization version   GIF version

Theorem uhgr0vb 26857
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0vb ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem uhgr0vb
StepHypRef Expression
1 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 26847 . . 3 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 pweq 4555 . . . . . . . 8 ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅)
54difeq1d 4098 . . . . . . 7 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅}))
6 pw0 4745 . . . . . . . . 9 𝒫 ∅ = {∅}
76difeq1i 4095 . . . . . . . 8 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
8 difid 4330 . . . . . . . 8 ({∅} ∖ {∅}) = ∅
97, 8eqtri 2844 . . . . . . 7 (𝒫 ∅ ∖ {∅}) = ∅
105, 9syl6eq 2872 . . . . . 6 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1110adantl 484 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1211feq3d 6501 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
13 f00 6561 . . . . 5 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
1413simplbi 500 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
1512, 14syl6bi 255 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅))
163, 15syl5 34 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
17 simpl 485 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
18 simpr 487 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
1917, 18uhgr0e 26856 . . . 4 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph)
2019ex 415 . . 3 (𝐺𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2120adantr 483 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2216, 21impbid 214 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cdif 3933  c0 4291  𝒫 cpw 4539  {csn 4567  dom cdm 5555  wf 6351  cfv 6355  Vtxcvtx 26781  iEdgciedg 26782  UHGraphcuhgr 26841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-uhgr 26843
This theorem is referenced by:  usgr0vb  27019  uhgr0v0e  27020  0uhgrsubgr  27061  finsumvtxdg2size  27332  0uhgrrusgr  27360  frgr0v  28041  frgruhgr0v  28043
  Copyright terms: Public domain W3C validator