MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sn0cld Structured version   Visualization version   GIF version

Theorem sn0cld 22252
Description: The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
sn0cld (Clsd‘{∅}) = {∅}

Proof of Theorem sn0cld
StepHypRef Expression
1 0ex 5235 . . 3 ∅ ∈ V
2 discld 22251 . . 3 (∅ ∈ V → (Clsd‘𝒫 ∅) = 𝒫 ∅)
31, 2ax-mp 5 . 2 (Clsd‘𝒫 ∅) = 𝒫 ∅
4 pw0 4751 . . 3 𝒫 ∅ = {∅}
54fveq2i 6774 . 2 (Clsd‘𝒫 ∅) = (Clsd‘{∅})
63, 5, 43eqtr3i 2776 1 (Clsd‘{∅}) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  𝒫 cpw 4539  {csn 4567  cfv 6432  Clsdccld 22178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-top 22054  df-cld 22181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator