MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sn0cld Structured version   Visualization version   GIF version

Theorem sn0cld 22816
Description: The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
sn0cld (Clsd‘{∅}) = {∅}

Proof of Theorem sn0cld
StepHypRef Expression
1 0ex 5308 . . 3 ∅ ∈ V
2 discld 22815 . . 3 (∅ ∈ V → (Clsd‘𝒫 ∅) = 𝒫 ∅)
31, 2ax-mp 5 . 2 (Clsd‘𝒫 ∅) = 𝒫 ∅
4 pw0 4816 . . 3 𝒫 ∅ = {∅}
54fveq2i 6895 . 2 (Clsd‘𝒫 ∅) = (Clsd‘{∅})
63, 5, 43eqtr3i 2766 1 (Clsd‘{∅}) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  Vcvv 3472  c0 4323  𝒫 cpw 4603  {csn 4629  cfv 6544  Clsdccld 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22618  df-cld 22745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator