| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version | ||
| Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5298. (Revised by BTernaryTau, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4559 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
| 2 | 1 | eleq1d 2816 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
| 3 | pweq 4559 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
| 5 | pweq 4559 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
| 6 | 5 | eleq1d 2816 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 7 | pweq 4559 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
| 9 | pw0 4759 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | snfi 8960 | . . . 4 ⊢ {∅} ∈ Fin | |
| 11 | 9, 10 | eqeltri 2827 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
| 13 | 12 | pwfilem 9197 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 15 | 2, 4, 6, 8, 11, 14 | findcard2 9069 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
| 16 | pwfir 9196 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
| 17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∅c0 4278 𝒫 cpw 4545 {csn 4571 ↦ cmpt 5167 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-om 7792 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 |
| This theorem is referenced by: xpfi 9199 mapfi 9227 r1fin 9661 dfac12k 10034 pwsdompw 10089 ackbij1lem5 10109 ackbij1lem9 10113 ackbij1lem10 10114 ackbij1lem14 10118 ackbij1b 10124 isfin1-2 10271 isfin1-3 10272 domtriomlem 10328 dominf 10331 dominfac 10459 gchhar 10565 omina 10577 gchina 10585 hashpw 14338 hashbclem 14354 qshash 15729 ackbijnn 15730 incexclem 15738 incexc 15739 incexc2 15740 hashbccl 16910 lagsubg2 19101 lagsubg 19102 orbsta2 19221 sylow1lem3 19507 sylow1lem5 19509 sylow2alem2 19525 sylow2a 19526 sylow2blem2 19528 sylow2blem3 19529 sylow3lem3 19536 sylow3lem4 19537 sylow3lem6 19539 pgpfac1lem5 19988 discmp 23308 cmpfi 23318 dis1stc 23409 1stckgenlem 23463 ptcmpfi 23723 fiufl 23826 musum 27123 madefi 27853 qerclwwlknfi 30045 hasheuni 34090 coinfliplem 34484 ballotth 34543 fineqvpow 35130 erdszelem2 35228 sticksstones22 42201 fisdomnn 42277 kelac2lem 43097 pwinfig 43594 |
| Copyright terms: Public domain | W3C validator |