![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version |
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8267 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴 ≈ 𝑚) | |
2 | pweq 4382 | . . . . . . 7 ⊢ (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅) | |
3 | 2 | eleq1d 2844 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
4 | pweq 4382 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘) | |
5 | 4 | eleq1d 2844 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin)) |
6 | pweq 4382 | . . . . . . . 8 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘) | |
7 | df-suc 5984 | . . . . . . . . 9 ⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) | |
8 | 7 | pweqi 4383 | . . . . . . . 8 ⊢ 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘}) |
9 | 6, 8 | syl6eq 2830 | . . . . . . 7 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘})) |
10 | 9 | eleq1d 2844 | . . . . . 6 ⊢ (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
11 | pw0 4576 | . . . . . . . 8 ⊢ 𝒫 ∅ = {∅} | |
12 | df1o2 7858 | . . . . . . . 8 ⊢ 1o = {∅} | |
13 | 11, 12 | eqtr4i 2805 | . . . . . . 7 ⊢ 𝒫 ∅ = 1o |
14 | 1onn 8005 | . . . . . . . 8 ⊢ 1o ∈ ω | |
15 | ssid 3842 | . . . . . . . 8 ⊢ 1o ⊆ 1o | |
16 | ssnnfi 8469 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
17 | 14, 15, 16 | mp2an 682 | . . . . . . 7 ⊢ 1o ∈ Fin |
18 | 13, 17 | eqeltri 2855 | . . . . . 6 ⊢ 𝒫 ∅ ∈ Fin |
19 | eqid 2778 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) | |
20 | 19 | pwfilem 8550 | . . . . . . 7 ⊢ (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
22 | 3, 5, 10, 18, 21 | finds1 7375 | . . . . 5 ⊢ (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin) |
23 | pwen 8423 | . . . . 5 ⊢ (𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚) | |
24 | enfii 8467 | . . . . 5 ⊢ ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin) | |
25 | 22, 23, 24 | syl2an 589 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚) → 𝒫 𝐴 ∈ Fin) |
26 | 25 | rexlimiva 3210 | . . 3 ⊢ (∃𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin) |
27 | 1, 26 | sylbi 209 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
28 | pwexr 7253 | . . . 4 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V) | |
29 | canth2g 8404 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
30 | sdomdom 8271 | . . . 4 ⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴) |
32 | domfi 8471 | . . 3 ⊢ ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
33 | 31, 32 | mpdan 677 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
34 | 27, 33 | impbii 201 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 Vcvv 3398 ∪ cun 3790 ⊆ wss 3792 ∅c0 4141 𝒫 cpw 4379 {csn 4398 class class class wbr 4888 ↦ cmpt 4967 suc csuc 5980 ωcom 7345 1oc1o 7838 ≈ cen 8240 ≼ cdom 8241 ≺ csdm 8242 Fincfn 8243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 |
This theorem is referenced by: mapfi 8552 r1fin 8935 dfac12k 9306 pwsdompw 9363 ackbij1lem5 9383 ackbij1lem9 9387 ackbij1lem10 9388 ackbij1lem14 9392 ackbij1b 9398 isfin1-2 9544 isfin1-3 9545 domtriomlem 9601 dominf 9604 dominfac 9732 gchhar 9838 omina 9850 gchina 9858 hashpw 13541 hashbclem 13554 qshash 14967 ackbijnn 14968 incexclem 14976 incexc 14977 incexc2 14978 hashbccl 16115 lagsubg2 18043 lagsubg 18044 orbsta2 18134 sylow1lem3 18403 sylow1lem5 18405 sylow2alem2 18421 sylow2a 18422 sylow2blem2 18424 sylow2blem3 18425 sylow3lem3 18432 sylow3lem4 18433 sylow3lem6 18435 pgpfac1lem5 18869 discmp 21614 cmpfi 21624 dis1stc 21715 1stckgenlem 21769 ptcmpfi 22029 fiufl 22132 musum 25373 qerclwwlknfi 27475 hasheuni 30749 coinfliplem 31143 ballotth 31202 erdszelem2 31777 kelac2lem 38603 pwinfig 38833 |
Copyright terms: Public domain | W3C validator |