| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version | ||
| Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4577 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
| 3 | pweq 4577 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
| 5 | pweq 4577 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 7 | pweq 4577 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
| 9 | pw0 4776 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | snfi 9014 | . . . 4 ⊢ {∅} ∈ Fin | |
| 11 | 9, 10 | eqeltri 2824 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
| 13 | 12 | pwfilem 9267 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 15 | 2, 4, 6, 8, 11, 14 | findcard2 9128 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
| 16 | pwfir 9266 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
| 17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ↦ cmpt 5188 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 |
| This theorem is referenced by: xpfi 9269 mapfi 9299 r1fin 9726 dfac12k 10101 pwsdompw 10156 ackbij1lem5 10176 ackbij1lem9 10180 ackbij1lem10 10181 ackbij1lem14 10185 ackbij1b 10191 isfin1-2 10338 isfin1-3 10339 domtriomlem 10395 dominf 10398 dominfac 10526 gchhar 10632 omina 10644 gchina 10652 hashpw 14401 hashbclem 14417 qshash 15793 ackbijnn 15794 incexclem 15802 incexc 15803 incexc2 15804 hashbccl 16974 lagsubg2 19126 lagsubg 19127 orbsta2 19246 sylow1lem3 19530 sylow1lem5 19532 sylow2alem2 19548 sylow2a 19549 sylow2blem2 19551 sylow2blem3 19552 sylow3lem3 19559 sylow3lem4 19560 sylow3lem6 19562 pgpfac1lem5 20011 discmp 23285 cmpfi 23295 dis1stc 23386 1stckgenlem 23440 ptcmpfi 23700 fiufl 23803 musum 27101 madefi 27824 qerclwwlknfi 30002 hasheuni 34075 coinfliplem 34470 ballotth 34529 fineqvpow 35086 erdszelem2 35179 sticksstones22 42156 fisdomnn 42232 kelac2lem 43053 pwinfig 43550 |
| Copyright terms: Public domain | W3C validator |