| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version | ||
| Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4567 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
| 3 | pweq 4567 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
| 5 | pweq 4567 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 7 | pweq 4567 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
| 9 | pw0 4766 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | snfi 8975 | . . . 4 ⊢ {∅} ∈ Fin | |
| 11 | 9, 10 | eqeltri 2824 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
| 13 | 12 | pwfilem 9225 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 15 | 2, 4, 6, 8, 11, 14 | findcard2 9088 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
| 16 | pwfir 9224 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
| 17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ↦ cmpt 5176 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 |
| This theorem is referenced by: xpfi 9227 mapfi 9257 r1fin 9688 dfac12k 10061 pwsdompw 10116 ackbij1lem5 10136 ackbij1lem9 10140 ackbij1lem10 10141 ackbij1lem14 10145 ackbij1b 10151 isfin1-2 10298 isfin1-3 10299 domtriomlem 10355 dominf 10358 dominfac 10486 gchhar 10592 omina 10604 gchina 10612 hashpw 14361 hashbclem 14377 qshash 15752 ackbijnn 15753 incexclem 15761 incexc 15762 incexc2 15763 hashbccl 16933 lagsubg2 19091 lagsubg 19092 orbsta2 19211 sylow1lem3 19497 sylow1lem5 19499 sylow2alem2 19515 sylow2a 19516 sylow2blem2 19518 sylow2blem3 19519 sylow3lem3 19526 sylow3lem4 19527 sylow3lem6 19529 pgpfac1lem5 19978 discmp 23301 cmpfi 23311 dis1stc 23402 1stckgenlem 23456 ptcmpfi 23716 fiufl 23819 musum 27117 madefi 27845 qerclwwlknfi 30035 hasheuni 34054 coinfliplem 34449 ballotth 34508 fineqvpow 35073 erdszelem2 35167 sticksstones22 42144 fisdomnn 42220 kelac2lem 43040 pwinfig 43537 |
| Copyright terms: Public domain | W3C validator |