MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfi Structured version   Visualization version   GIF version

Theorem pwfi 9385
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfi (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfi
Dummy variables 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4636 . . . 4 (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅)
21eleq1d 2829 . . 3 (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
3 pweq 4636 . . . 4 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
43eleq1d 2829 . . 3 (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin))
5 pweq 4636 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧}))
65eleq1d 2829 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
7 pweq 4636 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87eleq1d 2829 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin))
9 pw0 4837 . . . 4 𝒫 ∅ = {∅}
10 snfi 9109 . . . 4 {∅} ∈ Fin
119, 10eqeltri 2840 . . 3 𝒫 ∅ ∈ Fin
12 eqid 2740 . . . . 5 (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧}))
1312pwfilem 9384 . . . 4 (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
1413a1i 11 . . 3 (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
152, 4, 6, 8, 11, 14findcard2 9230 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
16 pwfir 9383 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
1715, 16impbii 209 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cun 3974  c0 4352  𝒫 cpw 4622  {csn 4648  cmpt 5249  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  xpfi  9386  mapfi  9418  r1fin  9842  dfac12k  10217  pwsdompw  10272  ackbij1lem5  10292  ackbij1lem9  10296  ackbij1lem10  10297  ackbij1lem14  10301  ackbij1b  10307  isfin1-2  10454  isfin1-3  10455  domtriomlem  10511  dominf  10514  dominfac  10642  gchhar  10748  omina  10760  gchina  10768  hashpw  14485  hashbclem  14501  qshash  15875  ackbijnn  15876  incexclem  15884  incexc  15885  incexc2  15886  hashbccl  17050  lagsubg2  19234  lagsubg  19235  orbsta2  19354  sylow1lem3  19642  sylow1lem5  19644  sylow2alem2  19660  sylow2a  19661  sylow2blem2  19663  sylow2blem3  19664  sylow3lem3  19671  sylow3lem4  19672  sylow3lem6  19674  pgpfac1lem5  20123  discmp  23427  cmpfi  23437  dis1stc  23528  1stckgenlem  23582  ptcmpfi  23842  fiufl  23945  musum  27252  madefi  27968  qerclwwlknfi  30105  hasheuni  34049  coinfliplem  34443  ballotth  34502  fineqvpow  35072  erdszelem2  35160  sticksstones22  42125  fisdomnn  42239  kelac2lem  43021  pwinfig  43523
  Copyright terms: Public domain W3C validator