![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version |
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Sep-2024.) |
Ref | Expression |
---|---|
pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4636 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
2 | 1 | eleq1d 2829 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
3 | pweq 4636 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
5 | pweq 4636 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
6 | 5 | eleq1d 2829 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
7 | pweq 4636 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
9 | pw0 4837 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | snfi 9109 | . . . 4 ⊢ {∅} ∈ Fin | |
11 | 9, 10 | eqeltri 2840 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
12 | eqid 2740 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
13 | 12 | pwfilem 9384 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
15 | 2, 4, 6, 8, 11, 14 | findcard2 9230 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
16 | pwfir 9383 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5249 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: xpfi 9386 mapfi 9418 r1fin 9842 dfac12k 10217 pwsdompw 10272 ackbij1lem5 10292 ackbij1lem9 10296 ackbij1lem10 10297 ackbij1lem14 10301 ackbij1b 10307 isfin1-2 10454 isfin1-3 10455 domtriomlem 10511 dominf 10514 dominfac 10642 gchhar 10748 omina 10760 gchina 10768 hashpw 14485 hashbclem 14501 qshash 15875 ackbijnn 15876 incexclem 15884 incexc 15885 incexc2 15886 hashbccl 17050 lagsubg2 19234 lagsubg 19235 orbsta2 19354 sylow1lem3 19642 sylow1lem5 19644 sylow2alem2 19660 sylow2a 19661 sylow2blem2 19663 sylow2blem3 19664 sylow3lem3 19671 sylow3lem4 19672 sylow3lem6 19674 pgpfac1lem5 20123 discmp 23427 cmpfi 23437 dis1stc 23528 1stckgenlem 23582 ptcmpfi 23842 fiufl 23945 musum 27252 madefi 27968 qerclwwlknfi 30105 hasheuni 34049 coinfliplem 34443 ballotth 34502 fineqvpow 35072 erdszelem2 35160 sticksstones22 42125 fisdomnn 42239 kelac2lem 43021 pwinfig 43523 |
Copyright terms: Public domain | W3C validator |