| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version | ||
| Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5365. (Revised by BTernaryTau, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4614 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
| 2 | 1 | eleq1d 2826 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
| 3 | pweq 4614 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 4 | 3 | eleq1d 2826 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
| 5 | pweq 4614 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
| 6 | 5 | eleq1d 2826 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 7 | pweq 4614 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2826 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
| 9 | pw0 4812 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | snfi 9083 | . . . 4 ⊢ {∅} ∈ Fin | |
| 11 | 9, 10 | eqeltri 2837 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid 2737 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
| 13 | 12 | pwfilem 9356 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 15 | 2, 4, 6, 8, 11, 14 | findcard2 9204 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
| 16 | pwfir 9355 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
| 17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ∅c0 4333 𝒫 cpw 4600 {csn 4626 ↦ cmpt 5225 Fincfn 8985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-dom 8987 df-fin 8989 |
| This theorem is referenced by: xpfi 9358 mapfi 9388 r1fin 9813 dfac12k 10188 pwsdompw 10243 ackbij1lem5 10263 ackbij1lem9 10267 ackbij1lem10 10268 ackbij1lem14 10272 ackbij1b 10278 isfin1-2 10425 isfin1-3 10426 domtriomlem 10482 dominf 10485 dominfac 10613 gchhar 10719 omina 10731 gchina 10739 hashpw 14475 hashbclem 14491 qshash 15863 ackbijnn 15864 incexclem 15872 incexc 15873 incexc2 15874 hashbccl 17041 lagsubg2 19212 lagsubg 19213 orbsta2 19332 sylow1lem3 19618 sylow1lem5 19620 sylow2alem2 19636 sylow2a 19637 sylow2blem2 19639 sylow2blem3 19640 sylow3lem3 19647 sylow3lem4 19648 sylow3lem6 19650 pgpfac1lem5 20099 discmp 23406 cmpfi 23416 dis1stc 23507 1stckgenlem 23561 ptcmpfi 23821 fiufl 23924 musum 27234 madefi 27950 qerclwwlknfi 30092 hasheuni 34086 coinfliplem 34481 ballotth 34540 fineqvpow 35110 erdszelem2 35197 sticksstones22 42169 fisdomnn 42285 kelac2lem 43076 pwinfig 43574 |
| Copyright terms: Public domain | W3C validator |