MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfi Structured version   Visualization version   GIF version

Theorem pwfi 9198
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5298. (Revised by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfi (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfi
Dummy variables 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4559 . . . 4 (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅)
21eleq1d 2816 . . 3 (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
3 pweq 4559 . . . 4 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
43eleq1d 2816 . . 3 (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin))
5 pweq 4559 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧}))
65eleq1d 2816 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
7 pweq 4559 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87eleq1d 2816 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin))
9 pw0 4759 . . . 4 𝒫 ∅ = {∅}
10 snfi 8960 . . . 4 {∅} ∈ Fin
119, 10eqeltri 2827 . . 3 𝒫 ∅ ∈ Fin
12 eqid 2731 . . . . 5 (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧}))
1312pwfilem 9197 . . . 4 (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
1413a1i 11 . . 3 (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
152, 4, 6, 8, 11, 14findcard2 9069 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
16 pwfir 9196 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
1715, 16impbii 209 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cun 3895  c0 4278  𝒫 cpw 4545  {csn 4571  cmpt 5167  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-en 8865  df-dom 8866  df-fin 8868
This theorem is referenced by:  xpfi  9199  mapfi  9227  r1fin  9661  dfac12k  10034  pwsdompw  10089  ackbij1lem5  10109  ackbij1lem9  10113  ackbij1lem10  10114  ackbij1lem14  10118  ackbij1b  10124  isfin1-2  10271  isfin1-3  10272  domtriomlem  10328  dominf  10331  dominfac  10459  gchhar  10565  omina  10577  gchina  10585  hashpw  14338  hashbclem  14354  qshash  15729  ackbijnn  15730  incexclem  15738  incexc  15739  incexc2  15740  hashbccl  16910  lagsubg2  19101  lagsubg  19102  orbsta2  19221  sylow1lem3  19507  sylow1lem5  19509  sylow2alem2  19525  sylow2a  19526  sylow2blem2  19528  sylow2blem3  19529  sylow3lem3  19536  sylow3lem4  19537  sylow3lem6  19539  pgpfac1lem5  19988  discmp  23308  cmpfi  23318  dis1stc  23409  1stckgenlem  23463  ptcmpfi  23723  fiufl  23826  musum  27123  madefi  27853  qerclwwlknfi  30045  hasheuni  34090  coinfliplem  34484  ballotth  34543  fineqvpow  35130  erdszelem2  35228  sticksstones22  42201  fisdomnn  42277  kelac2lem  43097  pwinfig  43594
  Copyright terms: Public domain W3C validator