MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfi Structured version   Visualization version   GIF version

Theorem pwfi 8961
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5288. (Revised by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfi (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfi
Dummy variables 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4549 . . . 4 (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅)
21eleq1d 2823 . . 3 (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
3 pweq 4549 . . . 4 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
43eleq1d 2823 . . 3 (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin))
5 pweq 4549 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧}))
65eleq1d 2823 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
7 pweq 4549 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87eleq1d 2823 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin))
9 pw0 4745 . . . 4 𝒫 ∅ = {∅}
10 snfi 8834 . . . 4 {∅} ∈ Fin
119, 10eqeltri 2835 . . 3 𝒫 ∅ ∈ Fin
12 eqid 2738 . . . . 5 (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧}))
1312pwfilem 8960 . . . 4 (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)
1413a1i 11 . . 3 (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin))
152, 4, 6, 8, 11, 14findcard2 8947 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
16 pwfir 8959 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
1715, 16impbii 208 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  cun 3885  c0 4256  𝒫 cpw 4533  {csn 4561  cmpt 5157  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by:  mapfi  9115  r1fin  9531  dfac12k  9903  pwsdompw  9960  ackbij1lem5  9980  ackbij1lem9  9984  ackbij1lem10  9985  ackbij1lem14  9989  ackbij1b  9995  isfin1-2  10141  isfin1-3  10142  domtriomlem  10198  dominf  10201  dominfac  10329  gchhar  10435  omina  10447  gchina  10455  hashpw  14151  hashbclem  14164  qshash  15539  ackbijnn  15540  incexclem  15548  incexc  15549  incexc2  15550  hashbccl  16704  lagsubg2  18817  lagsubg  18818  orbsta2  18920  sylow1lem3  19205  sylow1lem5  19207  sylow2alem2  19223  sylow2a  19224  sylow2blem2  19226  sylow2blem3  19227  sylow3lem3  19234  sylow3lem4  19235  sylow3lem6  19237  pgpfac1lem5  19682  discmp  22549  cmpfi  22559  dis1stc  22650  1stckgenlem  22704  ptcmpfi  22964  fiufl  23067  musum  26340  qerclwwlknfi  28437  hasheuni  32053  coinfliplem  32445  ballotth  32504  fineqvpow  33065  erdszelem2  33154  sticksstones22  40124  kelac2lem  40889  pwinfig  41168
  Copyright terms: Public domain W3C validator