| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version | ||
| Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4565 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
| 2 | 1 | eleq1d 2818 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
| 3 | pweq 4565 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 4 | 3 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
| 5 | pweq 4565 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
| 6 | 5 | eleq1d 2818 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 7 | pweq 4565 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
| 9 | pw0 4765 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | snfi 8976 | . . . 4 ⊢ {∅} ∈ Fin | |
| 11 | 9, 10 | eqeltri 2829 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
| 12 | eqid 2733 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
| 13 | 12 | pwfilem 9213 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
| 15 | 2, 4, 6, 8, 11, 14 | findcard2 9085 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
| 16 | pwfir 9212 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
| 17 | 15, 16 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ∅c0 4282 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5176 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-om 7806 df-1o 8394 df-en 8880 df-dom 8881 df-fin 8883 |
| This theorem is referenced by: xpfi 9215 mapfi 9243 r1fin 9677 dfac12k 10050 pwsdompw 10105 ackbij1lem5 10125 ackbij1lem9 10129 ackbij1lem10 10130 ackbij1lem14 10134 ackbij1b 10140 isfin1-2 10287 isfin1-3 10288 domtriomlem 10344 dominf 10347 dominfac 10475 gchhar 10581 omina 10593 gchina 10601 hashpw 14350 hashbclem 14366 qshash 15741 ackbijnn 15742 incexclem 15750 incexc 15751 incexc2 15752 hashbccl 16922 lagsubg2 19114 lagsubg 19115 orbsta2 19234 sylow1lem3 19520 sylow1lem5 19522 sylow2alem2 19538 sylow2a 19539 sylow2blem2 19541 sylow2blem3 19542 sylow3lem3 19549 sylow3lem4 19550 sylow3lem6 19552 pgpfac1lem5 20001 discmp 23333 cmpfi 23343 dis1stc 23434 1stckgenlem 23488 ptcmpfi 23748 fiufl 23851 musum 27148 madefi 27878 qerclwwlknfi 30074 hasheuni 34170 coinfliplem 34564 ballotth 34623 fineqvpow 35210 erdszelem2 35308 sticksstones22 42334 fisdomnn 42414 kelac2lem 43221 pwinfig 43718 |
| Copyright terms: Public domain | W3C validator |