Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwfi | Structured version Visualization version GIF version |
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Sep-2024.) |
Ref | Expression |
---|---|
pwfi | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4546 | . . . 4 ⊢ (𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅) | |
2 | 1 | eleq1d 2823 | . . 3 ⊢ (𝑥 = ∅ → (𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
3 | pweq 4546 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)) |
5 | pweq 4546 | . . . 4 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) | |
6 | 5 | eleq1d 2823 | . . 3 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝒫 𝑥 ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
7 | pweq 4546 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)) |
9 | pw0 4742 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | snfi 8788 | . . . 4 ⊢ {∅} ∈ Fin | |
11 | 9, 10 | eqeltri 2835 | . . 3 ⊢ 𝒫 ∅ ∈ Fin |
12 | eqid 2738 | . . . . 5 ⊢ (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) = (𝑐 ∈ 𝒫 𝑦 ↦ (𝑐 ∪ {𝑧})) | |
13 | 12 | pwfilem 8922 | . . . 4 ⊢ (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑦 ∈ Fin → (𝒫 𝑦 ∈ Fin → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin)) |
15 | 2, 4, 6, 8, 11, 14 | findcard2 8909 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
16 | pwfir 8921 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) | |
17 | 15, 16 | impbii 208 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: mapfi 9045 r1fin 9462 dfac12k 9834 pwsdompw 9891 ackbij1lem5 9911 ackbij1lem9 9915 ackbij1lem10 9916 ackbij1lem14 9920 ackbij1b 9926 isfin1-2 10072 isfin1-3 10073 domtriomlem 10129 dominf 10132 dominfac 10260 gchhar 10366 omina 10378 gchina 10386 hashpw 14079 hashbclem 14092 qshash 15467 ackbijnn 15468 incexclem 15476 incexc 15477 incexc2 15478 hashbccl 16632 lagsubg2 18732 lagsubg 18733 orbsta2 18835 sylow1lem3 19120 sylow1lem5 19122 sylow2alem2 19138 sylow2a 19139 sylow2blem2 19141 sylow2blem3 19142 sylow3lem3 19149 sylow3lem4 19150 sylow3lem6 19152 pgpfac1lem5 19597 discmp 22457 cmpfi 22467 dis1stc 22558 1stckgenlem 22612 ptcmpfi 22872 fiufl 22975 musum 26245 qerclwwlknfi 28338 hasheuni 31953 coinfliplem 32345 ballotth 32404 fineqvpow 32965 erdszelem2 33054 sticksstones22 40052 kelac2lem 40805 pwinfig 41057 |
Copyright terms: Public domain | W3C validator |