MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sn0topon Structured version   Visualization version   GIF version

Theorem sn0topon 22148
Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
sn0topon {∅} ∈ (TopOn‘∅)

Proof of Theorem sn0topon
StepHypRef Expression
1 pw0 4745 . 2 𝒫 ∅ = {∅}
2 0ex 5231 . . 3 ∅ ∈ V
3 distopon 22147 . . 3 (∅ ∈ V → 𝒫 ∅ ∈ (TopOn‘∅))
42, 3ax-mp 5 . 2 𝒫 ∅ ∈ (TopOn‘∅)
51, 4eqeltrri 2836 1 {∅} ∈ (TopOn‘∅)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  c0 4256  𝒫 cpw 4533  {csn 4561  cfv 6433  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-topon 22060
This theorem is referenced by:  sn0top  22149  0cnf  43418
  Copyright terms: Public domain W3C validator