MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sn0topon Structured version   Visualization version   GIF version

Theorem sn0topon 23006
Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
sn0topon {∅} ∈ (TopOn‘∅)

Proof of Theorem sn0topon
StepHypRef Expression
1 pw0 4811 . 2 𝒫 ∅ = {∅}
2 0ex 5306 . . 3 ∅ ∈ V
3 distopon 23005 . . 3 (∅ ∈ V → 𝒫 ∅ ∈ (TopOn‘∅))
42, 3ax-mp 5 . 2 𝒫 ∅ ∈ (TopOn‘∅)
51, 4eqeltrri 2837 1 {∅} ∈ (TopOn‘∅)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479  c0 4332  𝒫 cpw 4599  {csn 4625  cfv 6560  TopOnctopon 22917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-top 22901  df-topon 22918
This theorem is referenced by:  sn0top  23007  0cnf  45897
  Copyright terms: Public domain W3C validator