MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Visualization version   GIF version

Theorem hashbc 14453
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾

Proof of Theorem hashbc
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . . . . 6 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq1d 7434 . . . . 5 (𝑤 = ∅ → ((♯‘𝑤)C𝑘) = ((♯‘∅)C𝑘))
3 pweq 4618 . . . . . . 7 (𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅)
43rabeqdv 3434 . . . . . 6 (𝑤 = ∅ → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
54fveq2d 6900 . . . . 5 (𝑤 = ∅ → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
62, 5eqeq12d 2741 . . . 4 (𝑤 = ∅ → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
76ralbidv 3167 . . 3 (𝑤 = ∅ → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
8 fveq2 6896 . . . . . 6 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
98oveq1d 7434 . . . . 5 (𝑤 = 𝑦 → ((♯‘𝑤)C𝑘) = ((♯‘𝑦)C𝑘))
10 pweq 4618 . . . . . . 7 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
1110rabeqdv 3434 . . . . . 6 (𝑤 = 𝑦 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})
1211fveq2d 6900 . . . . 5 (𝑤 = 𝑦 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}))
139, 12eqeq12d 2741 . . . 4 (𝑤 = 𝑦 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
1413ralbidv 3167 . . 3 (𝑤 = 𝑦 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
15 fveq2 6896 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq1d 7434 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤)C𝑘) = ((♯‘(𝑦 ∪ {𝑧}))C𝑘))
17 pweq 4618 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → 𝒫 𝑤 = 𝒫 (𝑦 ∪ {𝑧}))
1817rabeqdv 3434 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})
1918fveq2d 6900 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
2016, 19eqeq12d 2741 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
2120ralbidv 3167 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
22 fveq2 6896 . . . . . 6 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
2322oveq1d 7434 . . . . 5 (𝑤 = 𝐴 → ((♯‘𝑤)C𝑘) = ((♯‘𝐴)C𝑘))
24 pweq 4618 . . . . . . 7 (𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴)
2524rabeqdv 3434 . . . . . 6 (𝑤 = 𝐴 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})
2625fveq2d 6900 . . . . 5 (𝑤 = 𝐴 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
2723, 26eqeq12d 2741 . . . 4 (𝑤 = 𝐴 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
2827ralbidv 3167 . . 3 (𝑤 = 𝐴 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
29 hash0 14367 . . . . . . . . . 10 (♯‘∅) = 0
3029a1i 11 . . . . . . . . 9 (𝑘 ∈ (0...0) → (♯‘∅) = 0)
31 elfz1eq 13552 . . . . . . . . 9 (𝑘 ∈ (0...0) → 𝑘 = 0)
3230, 31oveq12d 7437 . . . . . . . 8 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (0C0))
33 0nn0 12525 . . . . . . . . 9 0 ∈ ℕ0
34 bcn0 14310 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
3533, 34ax-mp 5 . . . . . . . 8 (0C0) = 1
3632, 35eqtrdi 2781 . . . . . . 7 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = 1)
3731eqcomd 2731 . . . . . . . . . . . 12 (𝑘 ∈ (0...0) → 0 = 𝑘)
38 pw0 4817 . . . . . . . . . . . . . 14 𝒫 ∅ = {∅}
3938raleqi 3312 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘)
40 0ex 5308 . . . . . . . . . . . . . 14 ∅ ∈ V
41 fveq2 6896 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4241, 29eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = 0)
4342eqeq1d 2727 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((♯‘𝑥) = 𝑘 ↔ 0 = 𝑘))
4440, 43ralsn 4687 . . . . . . . . . . . . 13 (∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4539, 44bitri 274 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4637, 45sylibr 233 . . . . . . . . . . 11 (𝑘 ∈ (0...0) → ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
47 rabid2 3452 . . . . . . . . . . 11 (𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} ↔ ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
4846, 47sylibr 233 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
4948, 38eqtr3di 2780 . . . . . . . . 9 (𝑘 ∈ (0...0) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = {∅})
5049fveq2d 6900 . . . . . . . 8 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘{∅}))
51 hashsng 14369 . . . . . . . . 9 (∅ ∈ V → (♯‘{∅}) = 1)
5240, 51ax-mp 5 . . . . . . . 8 (♯‘{∅}) = 1
5350, 52eqtrdi 2781 . . . . . . 7 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 1)
5436, 53eqtr4d 2768 . . . . . 6 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5554adantl 480 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5629oveq1i 7429 . . . . . 6 ((♯‘∅)C𝑘) = (0C𝑘)
57 bcval3 14306 . . . . . . . 8 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
5833, 57mp3an1 1444 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
59 id 22 . . . . . . . . . . . . . 14 (0 = 𝑘 → 0 = 𝑘)
60 0z 12607 . . . . . . . . . . . . . . 15 0 ∈ ℤ
61 elfz3 13551 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → 0 ∈ (0...0))
6260, 61ax-mp 5 . . . . . . . . . . . . . 14 0 ∈ (0...0)
6359, 62eqeltrrdi 2834 . . . . . . . . . . . . 13 (0 = 𝑘𝑘 ∈ (0...0))
6463con3i 154 . . . . . . . . . . . 12 𝑘 ∈ (0...0) → ¬ 0 = 𝑘)
6564adantl 480 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ¬ 0 = 𝑘)
6638raleqi 3312 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘)
6743notbid 317 . . . . . . . . . . . . 13 (𝑥 = ∅ → (¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘))
6840, 67ralsn 4687 . . . . . . . . . . . 12 (∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
6966, 68bitri 274 . . . . . . . . . . 11 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
7065, 69sylibr 233 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
71 rabeq0 4386 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅ ↔ ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
7270, 71sylibr 233 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅)
7372fveq2d 6900 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘∅))
7473, 29eqtrdi 2781 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 0)
7558, 74eqtr4d 2768 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7656, 75eqtrid 2777 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7755, 76pm2.61dan 811 . . . 4 (𝑘 ∈ ℤ → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7877rgen 3052 . . 3 𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
79 oveq2 7427 . . . . . 6 (𝑘 = 𝑗 → ((♯‘𝑦)C𝑘) = ((♯‘𝑦)C𝑗))
80 eqeq2 2737 . . . . . . . . 9 (𝑘 = 𝑗 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝑗))
8180rabbidv 3426 . . . . . . . 8 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗})
82 fveqeq2 6905 . . . . . . . . 9 (𝑥 = 𝑧 → ((♯‘𝑥) = 𝑗 ↔ (♯‘𝑧) = 𝑗))
8382cbvrabv 3429 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}
8481, 83eqtrdi 2781 . . . . . . 7 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
8584fveq2d 6900 . . . . . 6 (𝑘 = 𝑗 → (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
8679, 85eqeq12d 2741 . . . . 5 (𝑘 = 𝑗 → (((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})))
8786cbvralvw 3224 . . . 4 (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
88 simpll 765 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑦 ∈ Fin)
89 simplr 767 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ¬ 𝑧𝑦)
90 simprr 771 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9183fveq2i 6899 . . . . . . . . . 10 (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
9291eqeq2i 2738 . . . . . . . . 9 (((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9392ralbii 3082 . . . . . . . 8 (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9490, 93sylibr 233 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}))
95 simprl 769 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑘 ∈ ℤ)
9688, 89, 94, 95hashbclem 14452 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
9796expr 455 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑘 ∈ ℤ) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9897ralrimdva 3143 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9987, 98biimtrid 241 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
1007, 14, 21, 28, 78, 99findcard2s 9193 . 2 (𝐴 ∈ Fin → ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
101 oveq2 7427 . . . 4 (𝑘 = 𝐾 → ((♯‘𝐴)C𝑘) = ((♯‘𝐴)C𝐾))
102 eqeq2 2737 . . . . . 6 (𝑘 = 𝐾 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝐾))
103102rabbidv 3426 . . . . 5 (𝑘 = 𝐾 → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})
104103fveq2d 6900 . . . 4 (𝑘 = 𝐾 → (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
105101, 104eqeq12d 2741 . . 3 (𝑘 = 𝐾 → (((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})))
106105rspccva 3605 . 2 ((∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
107100, 106sylan 578 1 ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461  cun 3942  c0 4322  𝒫 cpw 4604  {csn 4630  cfv 6549  (class class class)co 7419  Fincfn 8964  0cc0 11145  1c1 11146  0cn0 12510  cz 12596  ...cfz 13524  Ccbc 14302  chash 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-seq 14008  df-fac 14274  df-bc 14303  df-hash 14331
This theorem is referenced by:  hashbc2  16983  sylow1lem1  19570  musum  27173  ballotlem1  34239  ballotlem2  34241  sticksstones5  41755
  Copyright terms: Public domain W3C validator