MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Visualization version   GIF version

Theorem hashbc 14378
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾

Proof of Theorem hashbc
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . 6 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq1d 7368 . . . . 5 (𝑤 = ∅ → ((♯‘𝑤)C𝑘) = ((♯‘∅)C𝑘))
3 pweq 4567 . . . . . . 7 (𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅)
43rabeqdv 3412 . . . . . 6 (𝑤 = ∅ → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
54fveq2d 6830 . . . . 5 (𝑤 = ∅ → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
62, 5eqeq12d 2745 . . . 4 (𝑤 = ∅ → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
76ralbidv 3152 . . 3 (𝑤 = ∅ → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
8 fveq2 6826 . . . . . 6 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
98oveq1d 7368 . . . . 5 (𝑤 = 𝑦 → ((♯‘𝑤)C𝑘) = ((♯‘𝑦)C𝑘))
10 pweq 4567 . . . . . . 7 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
1110rabeqdv 3412 . . . . . 6 (𝑤 = 𝑦 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})
1211fveq2d 6830 . . . . 5 (𝑤 = 𝑦 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}))
139, 12eqeq12d 2745 . . . 4 (𝑤 = 𝑦 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
1413ralbidv 3152 . . 3 (𝑤 = 𝑦 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
15 fveq2 6826 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq1d 7368 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤)C𝑘) = ((♯‘(𝑦 ∪ {𝑧}))C𝑘))
17 pweq 4567 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → 𝒫 𝑤 = 𝒫 (𝑦 ∪ {𝑧}))
1817rabeqdv 3412 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})
1918fveq2d 6830 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
2016, 19eqeq12d 2745 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
2120ralbidv 3152 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
22 fveq2 6826 . . . . . 6 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
2322oveq1d 7368 . . . . 5 (𝑤 = 𝐴 → ((♯‘𝑤)C𝑘) = ((♯‘𝐴)C𝑘))
24 pweq 4567 . . . . . . 7 (𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴)
2524rabeqdv 3412 . . . . . 6 (𝑤 = 𝐴 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})
2625fveq2d 6830 . . . . 5 (𝑤 = 𝐴 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
2723, 26eqeq12d 2745 . . . 4 (𝑤 = 𝐴 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
2827ralbidv 3152 . . 3 (𝑤 = 𝐴 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
29 hash0 14292 . . . . . . . . . 10 (♯‘∅) = 0
3029a1i 11 . . . . . . . . 9 (𝑘 ∈ (0...0) → (♯‘∅) = 0)
31 elfz1eq 13456 . . . . . . . . 9 (𝑘 ∈ (0...0) → 𝑘 = 0)
3230, 31oveq12d 7371 . . . . . . . 8 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (0C0))
33 0nn0 12417 . . . . . . . . 9 0 ∈ ℕ0
34 bcn0 14235 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
3533, 34ax-mp 5 . . . . . . . 8 (0C0) = 1
3632, 35eqtrdi 2780 . . . . . . 7 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = 1)
3731eqcomd 2735 . . . . . . . . . . . 12 (𝑘 ∈ (0...0) → 0 = 𝑘)
38 pw0 4766 . . . . . . . . . . . . . 14 𝒫 ∅ = {∅}
3938raleqi 3288 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘)
40 0ex 5249 . . . . . . . . . . . . . 14 ∅ ∈ V
41 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4241, 29eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = 0)
4342eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((♯‘𝑥) = 𝑘 ↔ 0 = 𝑘))
4440, 43ralsn 4635 . . . . . . . . . . . . 13 (∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4539, 44bitri 275 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4637, 45sylibr 234 . . . . . . . . . . 11 (𝑘 ∈ (0...0) → ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
47 rabid2 3430 . . . . . . . . . . 11 (𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} ↔ ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
4846, 47sylibr 234 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
4948, 38eqtr3di 2779 . . . . . . . . 9 (𝑘 ∈ (0...0) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = {∅})
5049fveq2d 6830 . . . . . . . 8 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘{∅}))
51 hashsng 14294 . . . . . . . . 9 (∅ ∈ V → (♯‘{∅}) = 1)
5240, 51ax-mp 5 . . . . . . . 8 (♯‘{∅}) = 1
5350, 52eqtrdi 2780 . . . . . . 7 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 1)
5436, 53eqtr4d 2767 . . . . . 6 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5554adantl 481 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5629oveq1i 7363 . . . . . 6 ((♯‘∅)C𝑘) = (0C𝑘)
57 bcval3 14231 . . . . . . . 8 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
5833, 57mp3an1 1450 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
59 id 22 . . . . . . . . . . . . . 14 (0 = 𝑘 → 0 = 𝑘)
60 0z 12500 . . . . . . . . . . . . . . 15 0 ∈ ℤ
61 elfz3 13455 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → 0 ∈ (0...0))
6260, 61ax-mp 5 . . . . . . . . . . . . . 14 0 ∈ (0...0)
6359, 62eqeltrrdi 2837 . . . . . . . . . . . . 13 (0 = 𝑘𝑘 ∈ (0...0))
6463con3i 154 . . . . . . . . . . . 12 𝑘 ∈ (0...0) → ¬ 0 = 𝑘)
6564adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ¬ 0 = 𝑘)
6638raleqi 3288 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘)
6743notbid 318 . . . . . . . . . . . . 13 (𝑥 = ∅ → (¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘))
6840, 67ralsn 4635 . . . . . . . . . . . 12 (∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
6966, 68bitri 275 . . . . . . . . . . 11 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
7065, 69sylibr 234 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
71 rabeq0 4341 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅ ↔ ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
7270, 71sylibr 234 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅)
7372fveq2d 6830 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘∅))
7473, 29eqtrdi 2780 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 0)
7558, 74eqtr4d 2767 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7656, 75eqtrid 2776 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7755, 76pm2.61dan 812 . . . 4 (𝑘 ∈ ℤ → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7877rgen 3046 . . 3 𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
79 oveq2 7361 . . . . . 6 (𝑘 = 𝑗 → ((♯‘𝑦)C𝑘) = ((♯‘𝑦)C𝑗))
80 eqeq2 2741 . . . . . . . . 9 (𝑘 = 𝑗 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝑗))
8180rabbidv 3404 . . . . . . . 8 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗})
82 fveqeq2 6835 . . . . . . . . 9 (𝑥 = 𝑧 → ((♯‘𝑥) = 𝑗 ↔ (♯‘𝑧) = 𝑗))
8382cbvrabv 3407 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}
8481, 83eqtrdi 2780 . . . . . . 7 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
8584fveq2d 6830 . . . . . 6 (𝑘 = 𝑗 → (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
8679, 85eqeq12d 2745 . . . . 5 (𝑘 = 𝑗 → (((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})))
8786cbvralvw 3207 . . . 4 (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
88 simpll 766 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑦 ∈ Fin)
89 simplr 768 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ¬ 𝑧𝑦)
90 simprr 772 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9183fveq2i 6829 . . . . . . . . . 10 (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
9291eqeq2i 2742 . . . . . . . . 9 (((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9392ralbii 3075 . . . . . . . 8 (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9490, 93sylibr 234 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}))
95 simprl 770 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑘 ∈ ℤ)
9688, 89, 94, 95hashbclem 14377 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
9796expr 456 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑘 ∈ ℤ) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9897ralrimdva 3129 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9987, 98biimtrid 242 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
1007, 14, 21, 28, 78, 99findcard2s 9089 . 2 (𝐴 ∈ Fin → ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
101 oveq2 7361 . . . 4 (𝑘 = 𝐾 → ((♯‘𝐴)C𝑘) = ((♯‘𝐴)C𝐾))
102 eqeq2 2741 . . . . . 6 (𝑘 = 𝐾 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝐾))
103102rabbidv 3404 . . . . 5 (𝑘 = 𝐾 → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})
104103fveq2d 6830 . . . 4 (𝑘 = 𝐾 → (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
105101, 104eqeq12d 2745 . . 3 (𝑘 = 𝐾 → (((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})))
106105rspccva 3578 . 2 ((∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
107100, 106sylan 580 1 ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cun 3903  c0 4286  𝒫 cpw 4553  {csn 4579  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  1c1 11029  0cn0 12402  cz 12489  ...cfz 13428  Ccbc 14227  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-seq 13927  df-fac 14199  df-bc 14228  df-hash 14256
This theorem is referenced by:  hashbc2  16936  sylow1lem1  19495  musum  27117  ballotlem1  34457  ballotlem2  34459  sticksstones5  42126
  Copyright terms: Public domain W3C validator