MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Visualization version   GIF version

Theorem hashbc 14425
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾

Proof of Theorem hashbc
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . 6 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
21oveq1d 7405 . . . . 5 (𝑤 = ∅ → ((♯‘𝑤)C𝑘) = ((♯‘∅)C𝑘))
3 pweq 4580 . . . . . . 7 (𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅)
43rabeqdv 3424 . . . . . 6 (𝑤 = ∅ → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
54fveq2d 6865 . . . . 5 (𝑤 = ∅ → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
62, 5eqeq12d 2746 . . . 4 (𝑤 = ∅ → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
76ralbidv 3157 . . 3 (𝑤 = ∅ → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})))
8 fveq2 6861 . . . . . 6 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
98oveq1d 7405 . . . . 5 (𝑤 = 𝑦 → ((♯‘𝑤)C𝑘) = ((♯‘𝑦)C𝑘))
10 pweq 4580 . . . . . . 7 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
1110rabeqdv 3424 . . . . . 6 (𝑤 = 𝑦 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})
1211fveq2d 6865 . . . . 5 (𝑤 = 𝑦 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}))
139, 12eqeq12d 2746 . . . 4 (𝑤 = 𝑦 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
1413ralbidv 3157 . . 3 (𝑤 = 𝑦 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘})))
15 fveq2 6861 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1615oveq1d 7405 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤)C𝑘) = ((♯‘(𝑦 ∪ {𝑧}))C𝑘))
17 pweq 4580 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → 𝒫 𝑤 = 𝒫 (𝑦 ∪ {𝑧}))
1817rabeqdv 3424 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})
1918fveq2d 6865 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
2016, 19eqeq12d 2746 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
2120ralbidv 3157 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
22 fveq2 6861 . . . . . 6 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
2322oveq1d 7405 . . . . 5 (𝑤 = 𝐴 → ((♯‘𝑤)C𝑘) = ((♯‘𝐴)C𝑘))
24 pweq 4580 . . . . . . 7 (𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴)
2524rabeqdv 3424 . . . . . 6 (𝑤 = 𝐴 → {𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})
2625fveq2d 6865 . . . . 5 (𝑤 = 𝐴 → (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
2723, 26eqeq12d 2746 . . . 4 (𝑤 = 𝐴 → (((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
2827ralbidv 3157 . . 3 (𝑤 = 𝐴 → (∀𝑘 ∈ ℤ ((♯‘𝑤)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑤 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘})))
29 hash0 14339 . . . . . . . . . 10 (♯‘∅) = 0
3029a1i 11 . . . . . . . . 9 (𝑘 ∈ (0...0) → (♯‘∅) = 0)
31 elfz1eq 13503 . . . . . . . . 9 (𝑘 ∈ (0...0) → 𝑘 = 0)
3230, 31oveq12d 7408 . . . . . . . 8 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (0C0))
33 0nn0 12464 . . . . . . . . 9 0 ∈ ℕ0
34 bcn0 14282 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
3533, 34ax-mp 5 . . . . . . . 8 (0C0) = 1
3632, 35eqtrdi 2781 . . . . . . 7 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = 1)
3731eqcomd 2736 . . . . . . . . . . . 12 (𝑘 ∈ (0...0) → 0 = 𝑘)
38 pw0 4779 . . . . . . . . . . . . . 14 𝒫 ∅ = {∅}
3938raleqi 3299 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘)
40 0ex 5265 . . . . . . . . . . . . . 14 ∅ ∈ V
41 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4241, 29eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = 0)
4342eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((♯‘𝑥) = 𝑘 ↔ 0 = 𝑘))
4440, 43ralsn 4648 . . . . . . . . . . . . 13 (∀𝑥 ∈ {∅} (♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4539, 44bitri 275 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4637, 45sylibr 234 . . . . . . . . . . 11 (𝑘 ∈ (0...0) → ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
47 rabid2 3442 . . . . . . . . . . 11 (𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} ↔ ∀𝑥 ∈ 𝒫 ∅(♯‘𝑥) = 𝑘)
4846, 47sylibr 234 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
4948, 38eqtr3di 2780 . . . . . . . . 9 (𝑘 ∈ (0...0) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = {∅})
5049fveq2d 6865 . . . . . . . 8 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘{∅}))
51 hashsng 14341 . . . . . . . . 9 (∅ ∈ V → (♯‘{∅}) = 1)
5240, 51ax-mp 5 . . . . . . . 8 (♯‘{∅}) = 1
5350, 52eqtrdi 2781 . . . . . . 7 (𝑘 ∈ (0...0) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 1)
5436, 53eqtr4d 2768 . . . . . 6 (𝑘 ∈ (0...0) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5554adantl 481 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
5629oveq1i 7400 . . . . . 6 ((♯‘∅)C𝑘) = (0C𝑘)
57 bcval3 14278 . . . . . . . 8 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
5833, 57mp3an1 1450 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
59 id 22 . . . . . . . . . . . . . 14 (0 = 𝑘 → 0 = 𝑘)
60 0z 12547 . . . . . . . . . . . . . . 15 0 ∈ ℤ
61 elfz3 13502 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → 0 ∈ (0...0))
6260, 61ax-mp 5 . . . . . . . . . . . . . 14 0 ∈ (0...0)
6359, 62eqeltrrdi 2838 . . . . . . . . . . . . 13 (0 = 𝑘𝑘 ∈ (0...0))
6463con3i 154 . . . . . . . . . . . 12 𝑘 ∈ (0...0) → ¬ 0 = 𝑘)
6564adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ¬ 0 = 𝑘)
6638raleqi 3299 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘)
6743notbid 318 . . . . . . . . . . . . 13 (𝑥 = ∅ → (¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘))
6840, 67ralsn 4648 . . . . . . . . . . . 12 (∀𝑥 ∈ {∅} ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
6966, 68bitri 275 . . . . . . . . . . 11 (∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
7065, 69sylibr 234 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
71 rabeq0 4354 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅ ↔ ∀𝑥 ∈ 𝒫 ∅ ¬ (♯‘𝑥) = 𝑘)
7270, 71sylibr 234 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → {𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘} = ∅)
7372fveq2d 6865 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = (♯‘∅))
7473, 29eqtrdi 2781 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}) = 0)
7558, 74eqtr4d 2768 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7656, 75eqtrid 2777 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7755, 76pm2.61dan 812 . . . 4 (𝑘 ∈ ℤ → ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘}))
7877rgen 3047 . . 3 𝑘 ∈ ℤ ((♯‘∅)C𝑘) = (♯‘{𝑥 ∈ 𝒫 ∅ ∣ (♯‘𝑥) = 𝑘})
79 oveq2 7398 . . . . . 6 (𝑘 = 𝑗 → ((♯‘𝑦)C𝑘) = ((♯‘𝑦)C𝑗))
80 eqeq2 2742 . . . . . . . . 9 (𝑘 = 𝑗 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝑗))
8180rabbidv 3416 . . . . . . . 8 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗})
82 fveqeq2 6870 . . . . . . . . 9 (𝑥 = 𝑧 → ((♯‘𝑥) = 𝑗 ↔ (♯‘𝑧) = 𝑗))
8382cbvrabv 3419 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}
8481, 83eqtrdi 2781 . . . . . . 7 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘} = {𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
8584fveq2d 6865 . . . . . 6 (𝑘 = 𝑗 → (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
8679, 85eqeq12d 2746 . . . . 5 (𝑘 = 𝑗 → (((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})))
8786cbvralvw 3216 . . . 4 (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
88 simpll 766 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑦 ∈ Fin)
89 simplr 768 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ¬ 𝑧𝑦)
90 simprr 772 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9183fveq2i 6864 . . . . . . . . . 10 (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗})
9291eqeq2i 2743 . . . . . . . . 9 (((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9392ralbii 3076 . . . . . . . 8 (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}) ↔ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))
9490, 93sylibr 234 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑗}))
95 simprl 770 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → 𝑘 ∈ ℤ)
9688, 89, 94, 95hashbclem 14424 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}))) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘}))
9796expr 456 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑘 ∈ ℤ) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9897ralrimdva 3134 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑗 ∈ ℤ ((♯‘𝑦)C𝑗) = (♯‘{𝑧 ∈ 𝒫 𝑦 ∣ (♯‘𝑧) = 𝑗}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
9987, 98biimtrid 242 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑘 ∈ ℤ ((♯‘𝑦)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝑦 ∣ (♯‘𝑥) = 𝑘}) → ∀𝑘 ∈ ℤ ((♯‘(𝑦 ∪ {𝑧}))C𝑘) = (♯‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝑘})))
1007, 14, 21, 28, 78, 99findcard2s 9135 . 2 (𝐴 ∈ Fin → ∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}))
101 oveq2 7398 . . . 4 (𝑘 = 𝐾 → ((♯‘𝐴)C𝑘) = ((♯‘𝐴)C𝐾))
102 eqeq2 2742 . . . . . 6 (𝑘 = 𝐾 → ((♯‘𝑥) = 𝑘 ↔ (♯‘𝑥) = 𝐾))
103102rabbidv 3416 . . . . 5 (𝑘 = 𝐾 → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})
104103fveq2d 6865 . . . 4 (𝑘 = 𝐾 → (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
105101, 104eqeq12d 2746 . . 3 (𝑘 = 𝐾 → (((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ↔ ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})))
106105rspccva 3590 . 2 ((∀𝑘 ∈ ℤ ((♯‘𝐴)C𝑘) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑘}) ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
107100, 106sylan 580 1 ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cun 3915  c0 4299  𝒫 cpw 4566  {csn 4592  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076  0cn0 12449  cz 12536  ...cfz 13475  Ccbc 14274  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-fac 14246  df-bc 14275  df-hash 14303
This theorem is referenced by:  hashbc2  16984  sylow1lem1  19535  musum  27108  ballotlem1  34485  ballotlem2  34487  sticksstones5  42145
  Copyright terms: Public domain W3C validator