Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumnul Structured version   Visualization version   GIF version

Theorem esumnul 34079
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.)
Assertion
Ref Expression
esumnul Σ*𝑥 ∈ ∅𝐴 = 0

Proof of Theorem esumnul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nftru 1804 . . . 4 𝑥
2 nfcv 2898 . . . 4 𝑥
3 0ex 5277 . . . . 5 ∅ ∈ V
43a1i 11 . . . 4 (⊤ → ∅ ∈ V)
5 ral0 4488 . . . . . 6 𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)
65a1i 11 . . . . 5 (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞))
76r19.21bi 3234 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞))
8 pw0 4788 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
98ineq1i 4191 . . . . . . . . . . . 12 (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin)
10 0fi 9056 . . . . . . . . . . . . 13 ∅ ∈ Fin
11 snssi 4784 . . . . . . . . . . . . . 14 (∅ ∈ Fin → {∅} ⊆ Fin)
12 dfss2 3944 . . . . . . . . . . . . . 14 ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅})
1311, 12sylib 218 . . . . . . . . . . . . 13 (∅ ∈ Fin → ({∅} ∩ Fin) = {∅})
1410, 13ax-mp 5 . . . . . . . . . . . 12 ({∅} ∩ Fin) = {∅}
159, 14eqtri 2758 . . . . . . . . . . 11 (𝒫 ∅ ∩ Fin) = {∅}
1615eleq2i 2826 . . . . . . . . . 10 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅})
17 velsn 4617 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1816, 17sylbb 219 . . . . . . . . 9 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅)
1918mpteq1d 5210 . . . . . . . 8 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = (𝑥 ∈ ∅ ↦ 𝐴))
20 mpt0 6680 . . . . . . . 8 (𝑥 ∈ ∅ ↦ 𝐴) = ∅
2119, 20eqtrdi 2786 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = ∅)
2221oveq2d 7421 . . . . . 6 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
23 xrge00 33007 . . . . . . 7 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
2423gsum0 18662 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
2522, 24eqtrdi 2786 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
2625adantl 481 . . . 4 ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
271, 2, 4, 7, 26esumval 34077 . . 3 (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ))
2827mptru 1547 . 2 Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )
29 fconstmpt 5716 . . . . 5 ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3029eqcomi 2744 . . . 4 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0})
31 0xr 11282 . . . . . . 7 0 ∈ ℝ*
3231rgenw 3055 . . . . . 6 𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ*
33 eqid 2735 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3433fnmpt 6678 . . . . . 6 (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin))
3532, 34ax-mp 5 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)
363snnz 4752 . . . . . 6 {∅} ≠ ∅
3715, 36eqnetri 3002 . . . . 5 (𝒫 ∅ ∩ Fin) ≠ ∅
38 fconst5 7198 . . . . 5 (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}))
3935, 37, 38mp2an 692 . . . 4 ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})
4030, 39mpbi 230 . . 3 ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}
4140supeq1i 9459 . 2 sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )
42 xrltso 13157 . . 3 < Or ℝ*
43 supsn 9485 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4442, 31, 43mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
4528, 41, 443eqtri 2762 1 Σ*𝑥 ∈ ∅𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cmpt 5201   Or wor 5560   × cxp 5652  ran crn 5655   Fn wfn 6526  (class class class)co 7405  Fincfn 8959  supcsup 9452  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  [,]cicc 13365  s cress 17251   Σg cgsu 17454  *𝑠cxrs 17514  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-xadd 13129  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-ds 17293  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-ordt 17515  df-xrs 17516  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-cntz 19300  df-cmn 19763  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-ntr 22958  df-nei 23036  df-cn 23165  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tsms 24065  df-esum 34059
This theorem is referenced by:  esumrnmpt2  34099  esum2dlem  34123  ddemeas  34267  carsgclctunlem1  34349
  Copyright terms: Public domain W3C validator