Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumnul Structured version   Visualization version   GIF version

Theorem esumnul 33700
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.)
Assertion
Ref Expression
esumnul Σ*𝑥 ∈ ∅𝐴 = 0

Proof of Theorem esumnul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nftru 1798 . . . 4 𝑥
2 nfcv 2899 . . . 4 𝑥
3 0ex 5311 . . . . 5 ∅ ∈ V
43a1i 11 . . . 4 (⊤ → ∅ ∈ V)
5 ral0 4516 . . . . . 6 𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)
65a1i 11 . . . . 5 (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞))
76r19.21bi 3246 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞))
8 pw0 4820 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
98ineq1i 4210 . . . . . . . . . . . 12 (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin)
10 0fin 9202 . . . . . . . . . . . . 13 ∅ ∈ Fin
11 snssi 4816 . . . . . . . . . . . . . 14 (∅ ∈ Fin → {∅} ⊆ Fin)
12 df-ss 3966 . . . . . . . . . . . . . 14 ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅})
1311, 12sylib 217 . . . . . . . . . . . . 13 (∅ ∈ Fin → ({∅} ∩ Fin) = {∅})
1410, 13ax-mp 5 . . . . . . . . . . . 12 ({∅} ∩ Fin) = {∅}
159, 14eqtri 2756 . . . . . . . . . . 11 (𝒫 ∅ ∩ Fin) = {∅}
1615eleq2i 2821 . . . . . . . . . 10 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅})
17 velsn 4648 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1816, 17sylbb 218 . . . . . . . . 9 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅)
1918mpteq1d 5247 . . . . . . . 8 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = (𝑥 ∈ ∅ ↦ 𝐴))
20 mpt0 6702 . . . . . . . 8 (𝑥 ∈ ∅ ↦ 𝐴) = ∅
2119, 20eqtrdi 2784 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = ∅)
2221oveq2d 7442 . . . . . 6 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
23 xrge00 32763 . . . . . . 7 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
2423gsum0 18651 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
2522, 24eqtrdi 2784 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
2625adantl 480 . . . 4 ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
271, 2, 4, 7, 26esumval 33698 . . 3 (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ))
2827mptru 1540 . 2 Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )
29 fconstmpt 5744 . . . . 5 ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3029eqcomi 2737 . . . 4 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0})
31 0xr 11299 . . . . . . 7 0 ∈ ℝ*
3231rgenw 3062 . . . . . 6 𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ*
33 eqid 2728 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3433fnmpt 6700 . . . . . 6 (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin))
3532, 34ax-mp 5 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)
363snnz 4785 . . . . . 6 {∅} ≠ ∅
3715, 36eqnetri 3008 . . . . 5 (𝒫 ∅ ∩ Fin) ≠ ∅
38 fconst5 7224 . . . . 5 (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}))
3935, 37, 38mp2an 690 . . . 4 ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})
4030, 39mpbi 229 . . 3 ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}
4140supeq1i 9478 . 2 sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )
42 xrltso 13160 . . 3 < Or ℝ*
43 supsn 9503 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4442, 31, 43mp2an 690 . 2 sup({0}, ℝ*, < ) = 0
4528, 41, 443eqtri 2760 1 Σ*𝑥 ∈ ∅𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wtru 1534  wcel 2098  wne 2937  wral 3058  Vcvv 3473  cin 3948  wss 3949  c0 4326  𝒫 cpw 4606  {csn 4632  cmpt 5235   Or wor 5593   × cxp 5680  ran crn 5683   Fn wfn 6548  (class class class)co 7426  Fincfn 8970  supcsup 9471  0cc0 11146  +∞cpnf 11283  *cxr 11285   < clt 11286  [,]cicc 13367  s cress 17216   Σg cgsu 17429  *𝑠cxrs 17489  Σ*cesum 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-xadd 13133  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-tset 17259  df-ple 17260  df-ds 17262  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-ordt 17490  df-xrs 17491  df-mre 17573  df-mrc 17574  df-acs 17576  df-ps 18565  df-tsr 18566  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-cntz 19275  df-cmn 19744  df-fbas 21283  df-fg 21284  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-ntr 22944  df-nei 23022  df-cn 23151  df-haus 23239  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-tsms 24051  df-esum 33680
This theorem is referenced by:  esumrnmpt2  33720  esum2dlem  33744  ddemeas  33888  carsgclctunlem1  33970
  Copyright terms: Public domain W3C validator