| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumnul | Structured version Visualization version GIF version | ||
| Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
| Ref | Expression |
|---|---|
| esumnul | ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑥∅ | |
| 3 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 5 | ral0 4513 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)) |
| 7 | 6 | r19.21bi 3251 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞)) |
| 8 | pw0 4812 | . . . . . . . . . . . . 13 ⊢ 𝒫 ∅ = {∅} | |
| 9 | 8 | ineq1i 4216 | . . . . . . . . . . . 12 ⊢ (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin) |
| 10 | 0fi 9082 | . . . . . . . . . . . . 13 ⊢ ∅ ∈ Fin | |
| 11 | snssi 4808 | . . . . . . . . . . . . . 14 ⊢ (∅ ∈ Fin → {∅} ⊆ Fin) | |
| 12 | dfss2 3969 | . . . . . . . . . . . . . 14 ⊢ ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅}) | |
| 13 | 11, 12 | sylib 218 | . . . . . . . . . . . . 13 ⊢ (∅ ∈ Fin → ({∅} ∩ Fin) = {∅}) |
| 14 | 10, 13 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ({∅} ∩ Fin) = {∅} |
| 15 | 9, 14 | eqtri 2765 | . . . . . . . . . . 11 ⊢ (𝒫 ∅ ∩ Fin) = {∅} |
| 16 | 15 | eleq2i 2833 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅}) |
| 17 | velsn 4642 | . . . . . . . . . 10 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
| 18 | 16, 17 | sylbb 219 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅) |
| 19 | 18 | mpteq1d 5237 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴)) |
| 20 | mpt0 6710 | . . . . . . . 8 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | |
| 21 | 19, 20 | eqtrdi 2793 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = ∅) |
| 22 | 21 | oveq2d 7447 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅)) |
| 23 | xrge00 33017 | . . . . . . 7 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 24 | 23 | gsum0 18697 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅) = 0 |
| 25 | 22, 24 | eqtrdi 2793 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 27 | 1, 2, 4, 7, 26 | esumval 34047 | . . 3 ⊢ (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )) |
| 28 | 27 | mptru 1547 | . 2 ⊢ Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) |
| 29 | fconstmpt 5747 | . . . . 5 ⊢ ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 30 | 29 | eqcomi 2746 | . . . 4 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) |
| 31 | 0xr 11308 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 32 | 31 | rgenw 3065 | . . . . . 6 ⊢ ∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* |
| 33 | eqid 2737 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 34 | 33 | fnmpt 6708 | . . . . . 6 ⊢ (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)) |
| 35 | 32, 34 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) |
| 36 | 3 | snnz 4776 | . . . . . 6 ⊢ {∅} ≠ ∅ |
| 37 | 15, 36 | eqnetri 3011 | . . . . 5 ⊢ (𝒫 ∅ ∩ Fin) ≠ ∅ |
| 38 | fconst5 7226 | . . . . 5 ⊢ (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})) | |
| 39 | 35, 37, 38 | mp2an 692 | . . . 4 ⊢ ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}) |
| 40 | 30, 39 | mpbi 230 | . . 3 ⊢ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0} |
| 41 | 40 | supeq1i 9487 | . 2 ⊢ sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ) |
| 42 | xrltso 13183 | . . 3 ⊢ < Or ℝ* | |
| 43 | supsn 9512 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 44 | 42, 31, 43 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 45 | 28, 41, 44 | 3eqtri 2769 | 1 ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 ↦ cmpt 5225 Or wor 5591 × cxp 5683 ran crn 5686 Fn wfn 6556 (class class class)co 7431 Fincfn 8985 supcsup 9480 0cc0 11155 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 [,]cicc 13390 ↾s cress 17274 Σg cgsu 17485 ℝ*𝑠cxrs 17545 Σ*cesum 34028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-xadd 13155 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-ordt 17546 df-xrs 17547 df-mre 17629 df-mrc 17630 df-acs 17632 df-ps 18611 df-tsr 18612 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-cntz 19335 df-cmn 19800 df-fbas 21361 df-fg 21362 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-ntr 23028 df-nei 23106 df-cn 23235 df-haus 23323 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-tsms 24135 df-esum 34029 |
| This theorem is referenced by: esumrnmpt2 34069 esum2dlem 34093 ddemeas 34237 carsgclctunlem1 34319 |
| Copyright terms: Public domain | W3C validator |