| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumnul | Structured version Visualization version GIF version | ||
| Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
| Ref | Expression |
|---|---|
| esumnul | ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥∅ | |
| 3 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 5 | ral0 4488 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)) |
| 7 | 6 | r19.21bi 3234 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞)) |
| 8 | pw0 4788 | . . . . . . . . . . . . 13 ⊢ 𝒫 ∅ = {∅} | |
| 9 | 8 | ineq1i 4191 | . . . . . . . . . . . 12 ⊢ (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin) |
| 10 | 0fi 9056 | . . . . . . . . . . . . 13 ⊢ ∅ ∈ Fin | |
| 11 | snssi 4784 | . . . . . . . . . . . . . 14 ⊢ (∅ ∈ Fin → {∅} ⊆ Fin) | |
| 12 | dfss2 3944 | . . . . . . . . . . . . . 14 ⊢ ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅}) | |
| 13 | 11, 12 | sylib 218 | . . . . . . . . . . . . 13 ⊢ (∅ ∈ Fin → ({∅} ∩ Fin) = {∅}) |
| 14 | 10, 13 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ({∅} ∩ Fin) = {∅} |
| 15 | 9, 14 | eqtri 2758 | . . . . . . . . . . 11 ⊢ (𝒫 ∅ ∩ Fin) = {∅} |
| 16 | 15 | eleq2i 2826 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅}) |
| 17 | velsn 4617 | . . . . . . . . . 10 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
| 18 | 16, 17 | sylbb 219 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅) |
| 19 | 18 | mpteq1d 5210 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴)) |
| 20 | mpt0 6680 | . . . . . . . 8 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | |
| 21 | 19, 20 | eqtrdi 2786 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = ∅) |
| 22 | 21 | oveq2d 7421 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅)) |
| 23 | xrge00 33007 | . . . . . . 7 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 24 | 23 | gsum0 18662 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅) = 0 |
| 25 | 22, 24 | eqtrdi 2786 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 27 | 1, 2, 4, 7, 26 | esumval 34077 | . . 3 ⊢ (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )) |
| 28 | 27 | mptru 1547 | . 2 ⊢ Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) |
| 29 | fconstmpt 5716 | . . . . 5 ⊢ ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 30 | 29 | eqcomi 2744 | . . . 4 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) |
| 31 | 0xr 11282 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 32 | 31 | rgenw 3055 | . . . . . 6 ⊢ ∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* |
| 33 | eqid 2735 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 34 | 33 | fnmpt 6678 | . . . . . 6 ⊢ (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)) |
| 35 | 32, 34 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) |
| 36 | 3 | snnz 4752 | . . . . . 6 ⊢ {∅} ≠ ∅ |
| 37 | 15, 36 | eqnetri 3002 | . . . . 5 ⊢ (𝒫 ∅ ∩ Fin) ≠ ∅ |
| 38 | fconst5 7198 | . . . . 5 ⊢ (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})) | |
| 39 | 35, 37, 38 | mp2an 692 | . . . 4 ⊢ ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}) |
| 40 | 30, 39 | mpbi 230 | . . 3 ⊢ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0} |
| 41 | 40 | supeq1i 9459 | . 2 ⊢ sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ) |
| 42 | xrltso 13157 | . . 3 ⊢ < Or ℝ* | |
| 43 | supsn 9485 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 44 | 42, 31, 43 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 45 | 28, 41, 44 | 3eqtri 2762 | 1 ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 ↦ cmpt 5201 Or wor 5560 × cxp 5652 ran crn 5655 Fn wfn 6526 (class class class)co 7405 Fincfn 8959 supcsup 9452 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 [,]cicc 13365 ↾s cress 17251 Σg cgsu 17454 ℝ*𝑠cxrs 17514 Σ*cesum 34058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-xadd 13129 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-tset 17290 df-ple 17291 df-ds 17293 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-ordt 17515 df-xrs 17516 df-mre 17598 df-mrc 17599 df-acs 17601 df-ps 18576 df-tsr 18577 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-cntz 19300 df-cmn 19763 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-ntr 22958 df-nei 23036 df-cn 23165 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-tsms 24065 df-esum 34059 |
| This theorem is referenced by: esumrnmpt2 34099 esum2dlem 34123 ddemeas 34267 carsgclctunlem1 34349 |
| Copyright terms: Public domain | W3C validator |