Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumnul Structured version   Visualization version   GIF version

Theorem esumnul 34031
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.)
Assertion
Ref Expression
esumnul Σ*𝑥 ∈ ∅𝐴 = 0

Proof of Theorem esumnul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nftru 1804 . . . 4 𝑥
2 nfcv 2891 . . . 4 𝑥
3 0ex 5257 . . . . 5 ∅ ∈ V
43a1i 11 . . . 4 (⊤ → ∅ ∈ V)
5 ral0 4472 . . . . . 6 𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)
65a1i 11 . . . . 5 (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞))
76r19.21bi 3227 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞))
8 pw0 4772 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
98ineq1i 4175 . . . . . . . . . . . 12 (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin)
10 0fi 8990 . . . . . . . . . . . . 13 ∅ ∈ Fin
11 snssi 4768 . . . . . . . . . . . . . 14 (∅ ∈ Fin → {∅} ⊆ Fin)
12 dfss2 3929 . . . . . . . . . . . . . 14 ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅})
1311, 12sylib 218 . . . . . . . . . . . . 13 (∅ ∈ Fin → ({∅} ∩ Fin) = {∅})
1410, 13ax-mp 5 . . . . . . . . . . . 12 ({∅} ∩ Fin) = {∅}
159, 14eqtri 2752 . . . . . . . . . . 11 (𝒫 ∅ ∩ Fin) = {∅}
1615eleq2i 2820 . . . . . . . . . 10 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅})
17 velsn 4601 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1816, 17sylbb 219 . . . . . . . . 9 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅)
1918mpteq1d 5192 . . . . . . . 8 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = (𝑥 ∈ ∅ ↦ 𝐴))
20 mpt0 6642 . . . . . . . 8 (𝑥 ∈ ∅ ↦ 𝐴) = ∅
2119, 20eqtrdi 2780 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = ∅)
2221oveq2d 7385 . . . . . 6 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
23 xrge00 32998 . . . . . . 7 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
2423gsum0 18593 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
2522, 24eqtrdi 2780 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
2625adantl 481 . . . 4 ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
271, 2, 4, 7, 26esumval 34029 . . 3 (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ))
2827mptru 1547 . 2 Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )
29 fconstmpt 5693 . . . . 5 ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3029eqcomi 2738 . . . 4 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0})
31 0xr 11197 . . . . . . 7 0 ∈ ℝ*
3231rgenw 3048 . . . . . 6 𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ*
33 eqid 2729 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3433fnmpt 6640 . . . . . 6 (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin))
3532, 34ax-mp 5 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)
363snnz 4736 . . . . . 6 {∅} ≠ ∅
3715, 36eqnetri 2995 . . . . 5 (𝒫 ∅ ∩ Fin) ≠ ∅
38 fconst5 7162 . . . . 5 (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}))
3935, 37, 38mp2an 692 . . . 4 ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})
4030, 39mpbi 230 . . 3 ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}
4140supeq1i 9374 . 2 sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )
42 xrltso 13077 . . 3 < Or ℝ*
43 supsn 9400 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4442, 31, 43mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
4528, 41, 443eqtri 2756 1 Σ*𝑥 ∈ ∅𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585  cmpt 5183   Or wor 5538   × cxp 5629  ran crn 5632   Fn wfn 6494  (class class class)co 7369  Fincfn 8895  supcsup 9367  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  [,]cicc 13285  s cress 17176   Σg cgsu 17379  *𝑠cxrs 17439  Σ*cesum 34010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-xadd 13049  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-ordt 17440  df-xrs 17441  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-cntz 19231  df-cmn 19696  df-fbas 21293  df-fg 21294  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-ntr 22940  df-nei 23018  df-cn 23147  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tsms 24047  df-esum 34011
This theorem is referenced by:  esumrnmpt2  34051  esum2dlem  34075  ddemeas  34219  carsgclctunlem1  34301
  Copyright terms: Public domain W3C validator