Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumnul Structured version   Visualization version   GIF version

Theorem esumnul 32016
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.)
Assertion
Ref Expression
esumnul Σ*𝑥 ∈ ∅𝐴 = 0

Proof of Theorem esumnul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nftru 1807 . . . 4 𝑥
2 nfcv 2907 . . . 4 𝑥
3 0ex 5231 . . . . 5 ∅ ∈ V
43a1i 11 . . . 4 (⊤ → ∅ ∈ V)
5 ral0 4443 . . . . . 6 𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)
65a1i 11 . . . . 5 (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞))
76r19.21bi 3134 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞))
8 pw0 4745 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
98ineq1i 4142 . . . . . . . . . . . 12 (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin)
10 0fin 8954 . . . . . . . . . . . . 13 ∅ ∈ Fin
11 snssi 4741 . . . . . . . . . . . . . 14 (∅ ∈ Fin → {∅} ⊆ Fin)
12 df-ss 3904 . . . . . . . . . . . . . 14 ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅})
1311, 12sylib 217 . . . . . . . . . . . . 13 (∅ ∈ Fin → ({∅} ∩ Fin) = {∅})
1410, 13ax-mp 5 . . . . . . . . . . . 12 ({∅} ∩ Fin) = {∅}
159, 14eqtri 2766 . . . . . . . . . . 11 (𝒫 ∅ ∩ Fin) = {∅}
1615eleq2i 2830 . . . . . . . . . 10 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅})
17 velsn 4577 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1816, 17sylbb 218 . . . . . . . . 9 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅)
1918mpteq1d 5169 . . . . . . . 8 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = (𝑥 ∈ ∅ ↦ 𝐴))
20 mpt0 6575 . . . . . . . 8 (𝑥 ∈ ∅ ↦ 𝐴) = ∅
2119, 20eqtrdi 2794 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥𝑦𝐴) = ∅)
2221oveq2d 7291 . . . . . 6 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
23 xrge00 31295 . . . . . . 7 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
2423gsum0 18368 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
2522, 24eqtrdi 2794 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
2625adantl 482 . . . 4 ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑥𝑦𝐴)) = 0)
271, 2, 4, 7, 26esumval 32014 . . 3 (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ))
2827mptru 1546 . 2 Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )
29 fconstmpt 5649 . . . . 5 ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3029eqcomi 2747 . . . 4 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0})
31 0xr 11022 . . . . . . 7 0 ∈ ℝ*
3231rgenw 3076 . . . . . 6 𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ*
33 eqid 2738 . . . . . . 7 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0)
3433fnmpt 6573 . . . . . 6 (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin))
3532, 34ax-mp 5 . . . . 5 (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)
363snnz 4712 . . . . . 6 {∅} ≠ ∅
3715, 36eqnetri 3014 . . . . 5 (𝒫 ∅ ∩ Fin) ≠ ∅
38 fconst5 7081 . . . . 5 (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}))
3935, 37, 38mp2an 689 . . . 4 ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})
4030, 39mpbi 229 . . 3 ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}
4140supeq1i 9206 . 2 sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )
42 xrltso 12875 . . 3 < Or ℝ*
43 supsn 9231 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4442, 31, 43mp2an 689 . 2 sup({0}, ℝ*, < ) = 0
4528, 41, 443eqtri 2770 1 Σ*𝑥 ∈ ∅𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cmpt 5157   Or wor 5502   × cxp 5587  ran crn 5590   Fn wfn 6428  (class class class)co 7275  Fincfn 8733  supcsup 9199  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  [,]cicc 13082  s cress 16941   Σg cgsu 17151  *𝑠cxrs 17211  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-xadd 12849  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-ordt 17212  df-xrs 17213  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-cntz 18923  df-cmn 19388  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-ntr 22171  df-nei 22249  df-cn 22378  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tsms 23278  df-esum 31996
This theorem is referenced by:  esumrnmpt2  32036  esum2dlem  32060  ddemeas  32204  carsgclctunlem1  32284
  Copyright terms: Public domain W3C validator