![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumnul | Structured version Visualization version GIF version |
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
Ref | Expression |
---|---|
esumnul | ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥∅ | |
3 | 0ex 5311 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
5 | ral0 4516 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)) |
7 | 6 | r19.21bi 3246 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞)) |
8 | pw0 4820 | . . . . . . . . . . . . 13 ⊢ 𝒫 ∅ = {∅} | |
9 | 8 | ineq1i 4210 | . . . . . . . . . . . 12 ⊢ (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin) |
10 | 0fin 9202 | . . . . . . . . . . . . 13 ⊢ ∅ ∈ Fin | |
11 | snssi 4816 | . . . . . . . . . . . . . 14 ⊢ (∅ ∈ Fin → {∅} ⊆ Fin) | |
12 | df-ss 3966 | . . . . . . . . . . . . . 14 ⊢ ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅}) | |
13 | 11, 12 | sylib 217 | . . . . . . . . . . . . 13 ⊢ (∅ ∈ Fin → ({∅} ∩ Fin) = {∅}) |
14 | 10, 13 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ({∅} ∩ Fin) = {∅} |
15 | 9, 14 | eqtri 2756 | . . . . . . . . . . 11 ⊢ (𝒫 ∅ ∩ Fin) = {∅} |
16 | 15 | eleq2i 2821 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅}) |
17 | velsn 4648 | . . . . . . . . . 10 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
18 | 16, 17 | sylbb 218 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅) |
19 | 18 | mpteq1d 5247 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴)) |
20 | mpt0 6702 | . . . . . . . 8 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | |
21 | 19, 20 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = ∅) |
22 | 21 | oveq2d 7442 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅)) |
23 | xrge00 32763 | . . . . . . 7 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
24 | 23 | gsum0 18651 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅) = 0 |
25 | 22, 24 | eqtrdi 2784 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
26 | 25 | adantl 480 | . . . 4 ⊢ ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
27 | 1, 2, 4, 7, 26 | esumval 33698 | . . 3 ⊢ (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )) |
28 | 27 | mptru 1540 | . 2 ⊢ Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) |
29 | fconstmpt 5744 | . . . . 5 ⊢ ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
30 | 29 | eqcomi 2737 | . . . 4 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) |
31 | 0xr 11299 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
32 | 31 | rgenw 3062 | . . . . . 6 ⊢ ∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* |
33 | eqid 2728 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
34 | 33 | fnmpt 6700 | . . . . . 6 ⊢ (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)) |
35 | 32, 34 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) |
36 | 3 | snnz 4785 | . . . . . 6 ⊢ {∅} ≠ ∅ |
37 | 15, 36 | eqnetri 3008 | . . . . 5 ⊢ (𝒫 ∅ ∩ Fin) ≠ ∅ |
38 | fconst5 7224 | . . . . 5 ⊢ (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})) | |
39 | 35, 37, 38 | mp2an 690 | . . . 4 ⊢ ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}) |
40 | 30, 39 | mpbi 229 | . . 3 ⊢ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0} |
41 | 40 | supeq1i 9478 | . 2 ⊢ sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ) |
42 | xrltso 13160 | . . 3 ⊢ < Or ℝ* | |
43 | supsn 9503 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
44 | 42, 31, 43 | mp2an 690 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
45 | 28, 41, 44 | 3eqtri 2760 | 1 ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ≠ wne 2937 ∀wral 3058 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 {csn 4632 ↦ cmpt 5235 Or wor 5593 × cxp 5680 ran crn 5683 Fn wfn 6548 (class class class)co 7426 Fincfn 8970 supcsup 9471 0cc0 11146 +∞cpnf 11283 ℝ*cxr 11285 < clt 11286 [,]cicc 13367 ↾s cress 17216 Σg cgsu 17429 ℝ*𝑠cxrs 17489 Σ*cesum 33679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-xadd 13133 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-tset 17259 df-ple 17260 df-ds 17262 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-ordt 17490 df-xrs 17491 df-mre 17573 df-mrc 17574 df-acs 17576 df-ps 18565 df-tsr 18566 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-cntz 19275 df-cmn 19744 df-fbas 21283 df-fg 21284 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-ntr 22944 df-nei 23022 df-cn 23151 df-haus 23239 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-tsms 24051 df-esum 33680 |
This theorem is referenced by: esumrnmpt2 33720 esum2dlem 33744 ddemeas 33888 carsgclctunlem1 33970 |
Copyright terms: Public domain | W3C validator |