| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumnul | Structured version Visualization version GIF version | ||
| Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
| Ref | Expression |
|---|---|
| esumnul | ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥∅ | |
| 3 | 0ex 5246 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 5 | ral0 4464 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)) |
| 7 | 6 | r19.21bi 3221 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞)) |
| 8 | pw0 4763 | . . . . . . . . . . . . 13 ⊢ 𝒫 ∅ = {∅} | |
| 9 | 8 | ineq1i 4167 | . . . . . . . . . . . 12 ⊢ (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin) |
| 10 | 0fi 8967 | . . . . . . . . . . . . 13 ⊢ ∅ ∈ Fin | |
| 11 | snssi 4759 | . . . . . . . . . . . . . 14 ⊢ (∅ ∈ Fin → {∅} ⊆ Fin) | |
| 12 | dfss2 3921 | . . . . . . . . . . . . . 14 ⊢ ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅}) | |
| 13 | 11, 12 | sylib 218 | . . . . . . . . . . . . 13 ⊢ (∅ ∈ Fin → ({∅} ∩ Fin) = {∅}) |
| 14 | 10, 13 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ({∅} ∩ Fin) = {∅} |
| 15 | 9, 14 | eqtri 2752 | . . . . . . . . . . 11 ⊢ (𝒫 ∅ ∩ Fin) = {∅} |
| 16 | 15 | eleq2i 2820 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅}) |
| 17 | velsn 4593 | . . . . . . . . . 10 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
| 18 | 16, 17 | sylbb 219 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅) |
| 19 | 18 | mpteq1d 5182 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴)) |
| 20 | mpt0 6624 | . . . . . . . 8 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | |
| 21 | 19, 20 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = ∅) |
| 22 | 21 | oveq2d 7365 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅)) |
| 23 | xrge00 32968 | . . . . . . 7 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 24 | 23 | gsum0 18558 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅) = 0 |
| 25 | 22, 24 | eqtrdi 2780 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
| 27 | 1, 2, 4, 7, 26 | esumval 34013 | . . 3 ⊢ (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )) |
| 28 | 27 | mptru 1547 | . 2 ⊢ Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) |
| 29 | fconstmpt 5681 | . . . . 5 ⊢ ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 30 | 29 | eqcomi 2738 | . . . 4 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) |
| 31 | 0xr 11162 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 32 | 31 | rgenw 3048 | . . . . . 6 ⊢ ∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* |
| 33 | eqid 2729 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
| 34 | 33 | fnmpt 6622 | . . . . . 6 ⊢ (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)) |
| 35 | 32, 34 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) |
| 36 | 3 | snnz 4728 | . . . . . 6 ⊢ {∅} ≠ ∅ |
| 37 | 15, 36 | eqnetri 2995 | . . . . 5 ⊢ (𝒫 ∅ ∩ Fin) ≠ ∅ |
| 38 | fconst5 7142 | . . . . 5 ⊢ (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})) | |
| 39 | 35, 37, 38 | mp2an 692 | . . . 4 ⊢ ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}) |
| 40 | 30, 39 | mpbi 230 | . . 3 ⊢ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0} |
| 41 | 40 | supeq1i 9337 | . 2 ⊢ sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ) |
| 42 | xrltso 13043 | . . 3 ⊢ < Or ℝ* | |
| 43 | supsn 9363 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 44 | 42, 31, 43 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 45 | 28, 41, 44 | 3eqtri 2756 | 1 ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5173 Or wor 5526 × cxp 5617 ran crn 5620 Fn wfn 6477 (class class class)co 7349 Fincfn 8872 supcsup 9330 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 [,]cicc 13251 ↾s cress 17141 Σg cgsu 17344 ℝ*𝑠cxrs 17404 Σ*cesum 33994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-xadd 13015 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-cntz 19196 df-cmn 19661 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-ntr 22905 df-nei 22983 df-cn 23112 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-esum 33995 |
| This theorem is referenced by: esumrnmpt2 34035 esum2dlem 34059 ddemeas 34203 carsgclctunlem1 34285 |
| Copyright terms: Public domain | W3C validator |