![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumnul | Structured version Visualization version GIF version |
Description: Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
Ref | Expression |
---|---|
esumnul | ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1806 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥∅ | |
3 | 0ex 5306 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
5 | ral0 4511 | . . . . . 6 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ∅ 𝐴 ∈ (0[,]+∞)) |
7 | 6 | r19.21bi 3248 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ∅) → 𝐴 ∈ (0[,]+∞)) |
8 | pw0 4814 | . . . . . . . . . . . . 13 ⊢ 𝒫 ∅ = {∅} | |
9 | 8 | ineq1i 4207 | . . . . . . . . . . . 12 ⊢ (𝒫 ∅ ∩ Fin) = ({∅} ∩ Fin) |
10 | 0fin 9167 | . . . . . . . . . . . . 13 ⊢ ∅ ∈ Fin | |
11 | snssi 4810 | . . . . . . . . . . . . . 14 ⊢ (∅ ∈ Fin → {∅} ⊆ Fin) | |
12 | df-ss 3964 | . . . . . . . . . . . . . 14 ⊢ ({∅} ⊆ Fin ↔ ({∅} ∩ Fin) = {∅}) | |
13 | 11, 12 | sylib 217 | . . . . . . . . . . . . 13 ⊢ (∅ ∈ Fin → ({∅} ∩ Fin) = {∅}) |
14 | 10, 13 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ({∅} ∩ Fin) = {∅} |
15 | 9, 14 | eqtri 2760 | . . . . . . . . . . 11 ⊢ (𝒫 ∅ ∩ Fin) = {∅} |
16 | 15 | eleq2i 2825 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↔ 𝑦 ∈ {∅}) |
17 | velsn 4643 | . . . . . . . . . 10 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
18 | 16, 17 | sylbb 218 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → 𝑦 = ∅) |
19 | 18 | mpteq1d 5242 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴)) |
20 | mpt0 6689 | . . . . . . . 8 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ | |
21 | 19, 20 | eqtrdi 2788 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → (𝑥 ∈ 𝑦 ↦ 𝐴) = ∅) |
22 | 21 | oveq2d 7421 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅)) |
23 | xrge00 32174 | . . . . . . 7 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
24 | 23 | gsum0 18599 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ∅) = 0 |
25 | 22, 24 | eqtrdi 2788 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
26 | 25 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ 𝑦 ∈ (𝒫 ∅ ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑥 ∈ 𝑦 ↦ 𝐴)) = 0) |
27 | 1, 2, 4, 7, 26 | esumval 33032 | . . 3 ⊢ (⊤ → Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < )) |
28 | 27 | mptru 1548 | . 2 ⊢ Σ*𝑥 ∈ ∅𝐴 = sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) |
29 | fconstmpt 5736 | . . . . 5 ⊢ ((𝒫 ∅ ∩ Fin) × {0}) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
30 | 29 | eqcomi 2741 | . . . 4 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) |
31 | 0xr 11257 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
32 | 31 | rgenw 3065 | . . . . . 6 ⊢ ∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* |
33 | eqid 2732 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) | |
34 | 33 | fnmpt 6687 | . . . . . 6 ⊢ (∀𝑦 ∈ (𝒫 ∅ ∩ Fin)0 ∈ ℝ* → (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin)) |
35 | 32, 34 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) |
36 | 3 | snnz 4779 | . . . . . 6 ⊢ {∅} ≠ ∅ |
37 | 15, 36 | eqnetri 3011 | . . . . 5 ⊢ (𝒫 ∅ ∩ Fin) ≠ ∅ |
38 | fconst5 7203 | . . . . 5 ⊢ (((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) Fn (𝒫 ∅ ∩ Fin) ∧ (𝒫 ∅ ∩ Fin) ≠ ∅) → ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0})) | |
39 | 35, 37, 38 | mp2an 690 | . . . 4 ⊢ ((𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = ((𝒫 ∅ ∩ Fin) × {0}) ↔ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0}) |
40 | 30, 39 | mpbi 229 | . . 3 ⊢ ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0) = {0} |
41 | 40 | supeq1i 9438 | . 2 ⊢ sup(ran (𝑦 ∈ (𝒫 ∅ ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ) |
42 | xrltso 13116 | . . 3 ⊢ < Or ℝ* | |
43 | supsn 9463 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
44 | 42, 31, 43 | mp2an 690 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
45 | 28, 41, 44 | 3eqtri 2764 | 1 ⊢ Σ*𝑥 ∈ ∅𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 {csn 4627 ↦ cmpt 5230 Or wor 5586 × cxp 5673 ran crn 5676 Fn wfn 6535 (class class class)co 7405 Fincfn 8935 supcsup 9431 0cc0 11106 +∞cpnf 11241 ℝ*cxr 11243 < clt 11244 [,]cicc 13323 ↾s cress 17169 Σg cgsu 17382 ℝ*𝑠cxrs 17442 Σ*cesum 33013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-xadd 13089 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-tset 17212 df-ple 17213 df-ds 17215 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-ordt 17443 df-xrs 17444 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-cntz 19175 df-cmn 19644 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-ntr 22515 df-nei 22593 df-cn 22722 df-haus 22810 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tsms 23622 df-esum 33014 |
This theorem is referenced by: esumrnmpt2 33054 esum2dlem 33078 ddemeas 33222 carsgclctunlem1 33304 |
Copyright terms: Public domain | W3C validator |