MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wpthswwlks2on Structured version   Visualization version   GIF version

Theorem wpthswwlks2on 28227
Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 13-May-2021.) (Revised by AV, 16-Mar-2022.)
Assertion
Ref Expression
wpthswwlks2on ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))

Proof of Theorem wpthswwlks2on
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlknon 28123 . . . . . . 7 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))
21a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
32anbi1d 629 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
4 3anass 1093 . . . . . . 7 ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
54anbi1i 623 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6 anass 468 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
75, 6bitri 274 . . . . 5 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
83, 7bitrdi 286 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))))
98rabbidva2 3400 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)})
10 usgrupgr 27455 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
11 wlklnwwlknupgr 28152 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1210, 11syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1312bicomd 222 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
1413adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
15 simprl 767 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑤)
16 simprl 767 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘0) = 𝐴)
1716adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘0) = 𝐴)
18 fveq2 6756 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 2 → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
1918ad2antll 725 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
20 simprr 769 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘2) = 𝐵)
2120adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘2) = 𝐵)
2219, 21eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = 𝐵)
23 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = (Vtx‘𝐺)
2423wlkp 27886 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑤𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
25 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → (0...(♯‘𝑓)) = (0...2))
2625feq2d 6570 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → (𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑤:(0...2)⟶(Vtx‘𝐺)))
2724, 26syl5ibcom 244 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑤 → ((♯‘𝑓) = 2 → 𝑤:(0...2)⟶(Vtx‘𝐺)))
2827imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑤:(0...2)⟶(Vtx‘𝐺))
29 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 𝑤:(0...2)⟶(Vtx‘𝐺))
30 2nn0 12180 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
31 0elfz 13282 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℕ0 → 0 ∈ (0...2))
3230, 31mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 0 ∈ (0...2))
3329, 32ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
34 nn0fz0 13283 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℕ0 ↔ 2 ∈ (0...2))
3530, 34mpbi 229 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0...2)
3635a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 2 ∈ (0...2))
3729, 36ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘2) ∈ (Vtx‘𝐺))
3833, 37jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑤:(0...2)⟶(Vtx‘𝐺) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
3928, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
40 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘0) = 𝐴 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝐴 ∈ (Vtx‘𝐺)))
41 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘2) = 𝐵 → ((𝑤‘2) ∈ (Vtx‘𝐺) ↔ 𝐵 ∈ (Vtx‘𝐺)))
4240, 41bi2anan9 635 . . . . . . . . . . . . . . . . . 18 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4339, 42syl5ib 243 . . . . . . . . . . . . . . . . 17 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4443adantl 481 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4544imp 406 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
46 vex 3426 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
47 vex 3426 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
4846, 47pm3.2i 470 . . . . . . . . . . . . . . 15 (𝑓 ∈ V ∧ 𝑤 ∈ V)
4923iswlkon 27927 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑤 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5045, 48, 49sylancl 585 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5115, 17, 22, 50mpbir3and 1340 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤)
52 simplll 771 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐺 ∈ USGraph)
53 simprr 769 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2)
54 simpllr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐴𝐵)
55 usgr2wlkspth 28028 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (♯‘𝑓) = 2 ∧ 𝐴𝐵) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5652, 53, 54, 55syl3anc 1369 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5751, 56mpbid 231 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
5857ex 412 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5958eximdv 1921 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6059ex 412 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6160com23 86 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6214, 61sylbid 239 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6362imp 406 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6463pm4.71d 561 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6564bicomd 222 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → ((((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
6665rabbidva 3402 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
679, 66eqtrd 2778 . 2 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
6823iswspthsnon 28122 . 2 (𝐴(2 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
6923iswwlksnon 28119 . 2 (𝐴(2 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}
7067, 68, 693eqtr4g 2804 1 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  {crab 3067  Vcvv 3422   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  2c2 11958  0cn0 12163  ...cfz 13168  chash 13972  Vtxcvtx 27269  UPGraphcupgr 27353  USGraphcusgr 27422  Walkscwlks 27866  WalksOncwlkson 27867  SPathsOncspthson 27984   WWalksN cwwlksn 28092   WWalksNOn cwwlksnon 28093   WSPathsNOn cwwspthsnon 28095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-wlks 27869  df-wlkson 27870  df-trls 27962  df-trlson 27963  df-pths 27985  df-spths 27986  df-pthson 27987  df-spthson 27988  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098  df-wspthsnon 28100
This theorem is referenced by:  usgr2wspthons3  28230  frgr2wsp1  28595
  Copyright terms: Public domain W3C validator