| Step | Hyp | Ref
| Expression |
| 1 | | wwlknon 29877 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
| 3 | 2 | anbi1d 631 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 4 | | 3anass 1095 |
. . . . . . 7
⊢ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
| 5 | 4 | anbi1i 624 |
. . . . . 6
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 6 | | anass 468 |
. . . . . 6
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 7 | 5, 6 | bitri 275 |
. . . . 5
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 8 | 3, 7 | bitrdi 287 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))) |
| 9 | 8 | rabbidva2 3438 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)}) |
| 10 | | usgrupgr 29202 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UPGraph) |
| 11 | | wlklnwwlknupgr 29906 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph →
(∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺))) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph →
(∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺))) |
| 13 | 12 | bicomd 223 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2))) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2))) |
| 15 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑤) |
| 16 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘0) = 𝐴) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘0) = 𝐴) |
| 18 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑓) =
2 → (𝑤‘(♯‘𝑓)) = (𝑤‘2)) |
| 19 | 18 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = (𝑤‘2)) |
| 20 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘2) = 𝐵) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘2) = 𝐵) |
| 22 | 19, 21 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = 𝐵) |
| 23 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 24 | 23 | wlkp 29634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(Walks‘𝐺)𝑤 → 𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺)) |
| 25 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑓) =
2 → (0...(♯‘𝑓)) = (0...2)) |
| 26 | 25 | feq2d 6722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑓) =
2 → (𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑤:(0...2)⟶(Vtx‘𝐺))) |
| 27 | 24, 26 | syl5ibcom 245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(Walks‘𝐺)𝑤 → ((♯‘𝑓) = 2 → 𝑤:(0...2)⟶(Vtx‘𝐺))) |
| 28 | 27 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑤:(0...2)⟶(Vtx‘𝐺)) |
| 29 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 𝑤:(0...2)⟶(Vtx‘𝐺)) |
| 30 | | 2nn0 12543 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ0 |
| 31 | | 0elfz 13664 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (2 ∈
ℕ0 → 0 ∈ (0...2)) |
| 32 | 30, 31 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 0 ∈
(0...2)) |
| 33 | 29, 32 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
| 34 | | nn0fz0 13665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℕ0 ↔ 2 ∈ (0...2)) |
| 35 | 30, 34 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
(0...2) |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 2 ∈
(0...2)) |
| 37 | 29, 36 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘2) ∈ (Vtx‘𝐺)) |
| 38 | 33, 37 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺))) |
| 39 | 28, 38 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺))) |
| 40 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤‘0) = 𝐴 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝐴 ∈ (Vtx‘𝐺))) |
| 41 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤‘2) = 𝐵 → ((𝑤‘2) ∈ (Vtx‘𝐺) ↔ 𝐵 ∈ (Vtx‘𝐺))) |
| 42 | 40, 41 | bi2anan9 638 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
| 43 | 39, 42 | imbitrid 244 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
| 44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
| 45 | 44 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
| 46 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
| 47 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑤 ∈ V |
| 48 | 46, 47 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ V ∧ 𝑤 ∈ V) |
| 49 | 23 | iswlkon 29675 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑤 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵))) |
| 50 | 45, 48, 49 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵))) |
| 51 | 15, 17, 22, 50 | mpbir3and 1343 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤) |
| 52 | | simplll 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐺 ∈ USGraph) |
| 53 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2) |
| 54 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐴 ≠ 𝐵) |
| 55 | | usgr2wlkspth 29779 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝑓) = 2 ∧
𝐴 ≠ 𝐵) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 56 | 52, 53, 54, 55 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 57 | 51, 56 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
| 58 | 57 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 59 | 58 | eximdv 1917 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 60 | 59 | ex 412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 61 | 60 | com23 86 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 62 | 14, 61 | sylbid 240 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 63 | 62 | imp 406 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
| 64 | 63 | pm4.71d 561 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
| 65 | 64 | bicomd 223 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → ((((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
| 66 | 65 | rabbidva 3443 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}) |
| 67 | 9, 66 | eqtrd 2777 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}) |
| 68 | 23 | iswspthsnon 29876 |
. 2
⊢ (𝐴(2 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} |
| 69 | 23 | iswwlksnon 29873 |
. 2
⊢ (𝐴(2 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)} |
| 70 | 67, 68, 69 | 3eqtr4g 2802 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵)) |