MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wpthswwlks2on Structured version   Visualization version   GIF version

Theorem wpthswwlks2on 29253
Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 13-May-2021.) (Revised by AV, 16-Mar-2022.)
Assertion
Ref Expression
wpthswwlks2on ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (𝐴(2 WSPathsNOn 𝐺)𝐡) = (𝐴(2 WWalksNOn 𝐺)𝐡))

Proof of Theorem wpthswwlks2on
Dummy variables 𝑓 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlknon 29149 . . . . . . 7 (𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡))
21a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)))
32anbi1d 630 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ ((𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ ((𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
4 3anass 1095 . . . . . . 7 ((𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)))
54anbi1i 624 . . . . . 6 (((𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ ((𝑀 ∈ (2 WWalksN 𝐺) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
6 anass 469 . . . . . 6 (((𝑀 ∈ (2 WWalksN 𝐺) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
75, 6bitri 274 . . . . 5 (((𝑀 ∈ (2 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
83, 7bitrdi 286 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ ((𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ (𝑀 ∈ (2 WWalksN 𝐺) ∧ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))))
98rabbidva2 3434 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ {𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = {𝑀 ∈ (2 WWalksN 𝐺) ∣ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)})
10 usgrupgr 28480 . . . . . . . . . . 11 (𝐺 ∈ USGraph β†’ 𝐺 ∈ UPGraph)
11 wlklnwwlknupgr 29178 . . . . . . . . . . 11 (𝐺 ∈ UPGraph β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) ↔ 𝑀 ∈ (2 WWalksN 𝐺)))
1210, 11syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) ↔ 𝑀 ∈ (2 WWalksN 𝐺)))
1312bicomd 222 . . . . . . . . 9 (𝐺 ∈ USGraph β†’ (𝑀 ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)))
1413adantr 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (𝑀 ∈ (2 WWalksN 𝐺) ↔ βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)))
15 simprl 769 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ 𝑓(Walksβ€˜πΊ)𝑀)
16 simprl 769 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) β†’ (π‘€β€˜0) = 𝐴)
1716adantr 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (π‘€β€˜0) = 𝐴)
18 fveq2 6891 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘“) = 2 β†’ (π‘€β€˜(β™―β€˜π‘“)) = (π‘€β€˜2))
1918ad2antll 727 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (π‘€β€˜(β™―β€˜π‘“)) = (π‘€β€˜2))
20 simprr 771 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) β†’ (π‘€β€˜2) = 𝐡)
2120adantr 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (π‘€β€˜2) = 𝐡)
2219, 21eqtrd 2772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (π‘€β€˜(β™―β€˜π‘“)) = 𝐡)
23 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2423wlkp 28911 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walksβ€˜πΊ)𝑀 β†’ 𝑀:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))
25 oveq2 7419 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘“) = 2 β†’ (0...(β™―β€˜π‘“)) = (0...2))
2625feq2d 6703 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘“) = 2 β†’ (𝑀:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ↔ 𝑀:(0...2)⟢(Vtxβ€˜πΊ)))
2724, 26syl5ibcom 244 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walksβ€˜πΊ)𝑀 β†’ ((β™―β€˜π‘“) = 2 β†’ 𝑀:(0...2)⟢(Vtxβ€˜πΊ)))
2827imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ 𝑀:(0...2)⟢(Vtxβ€˜πΊ))
29 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ 𝑀:(0...2)⟢(Vtxβ€˜πΊ))
30 2nn0 12491 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ β„•0
31 0elfz 13600 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ β„•0 β†’ 0 ∈ (0...2))
3230, 31mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ 0 ∈ (0...2))
3329, 32ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ (π‘€β€˜0) ∈ (Vtxβ€˜πΊ))
34 nn0fz0 13601 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ β„•0 ↔ 2 ∈ (0...2))
3530, 34mpbi 229 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0...2)
3635a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ 2 ∈ (0...2))
3729, 36ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ (π‘€β€˜2) ∈ (Vtxβ€˜πΊ))
3833, 37jca 512 . . . . . . . . . . . . . . . . . . 19 (𝑀:(0...2)⟢(Vtxβ€˜πΊ) β†’ ((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ∧ (π‘€β€˜2) ∈ (Vtxβ€˜πΊ)))
3928, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ ((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ∧ (π‘€β€˜2) ∈ (Vtxβ€˜πΊ)))
40 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 ((π‘€β€˜0) = 𝐴 β†’ ((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ↔ 𝐴 ∈ (Vtxβ€˜πΊ)))
41 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 ((π‘€β€˜2) = 𝐡 β†’ ((π‘€β€˜2) ∈ (Vtxβ€˜πΊ) ↔ 𝐡 ∈ (Vtxβ€˜πΊ)))
4240, 41bi2anan9 637 . . . . . . . . . . . . . . . . . 18 (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ (((π‘€β€˜0) ∈ (Vtxβ€˜πΊ) ∧ (π‘€β€˜2) ∈ (Vtxβ€˜πΊ)) ↔ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ))))
4339, 42imbitrid 243 . . . . . . . . . . . . . . . . 17 (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ ((𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ))))
4443adantl 482 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) β†’ ((𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ))))
4544imp 407 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)))
46 vex 3478 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
47 vex 3478 . . . . . . . . . . . . . . . 16 𝑀 ∈ V
4846, 47pm3.2i 471 . . . . . . . . . . . . . . 15 (𝑓 ∈ V ∧ 𝑀 ∈ V)
4923iswlkon 28952 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝑓 ∈ V ∧ 𝑀 ∈ V)) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑀 ↔ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜(β™―β€˜π‘“)) = 𝐡)))
5045, 48, 49sylancl 586 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑀 ↔ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜(β™―β€˜π‘“)) = 𝐡)))
5115, 17, 22, 50mpbir3and 1342 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ 𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑀)
52 simplll 773 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ 𝐺 ∈ USGraph)
53 simprr 771 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (β™―β€˜π‘“) = 2)
54 simpllr 774 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ 𝐴 β‰  𝐡)
55 usgr2wlkspth 29054 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (β™―β€˜π‘“) = 2 ∧ 𝐴 β‰  𝐡) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑀 ↔ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
5652, 53, 54, 55syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑀 ↔ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
5751, 56mpbid 231 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) ∧ (𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2)) β†’ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)
5857ex 413 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) β†’ ((𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
5958eximdv 1920 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
6059ex 413 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
6160com23 86 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (βˆƒπ‘“(𝑓(Walksβ€˜πΊ)𝑀 ∧ (β™―β€˜π‘“) = 2) β†’ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
6214, 61sylbid 239 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (𝑀 ∈ (2 WWalksN 𝐺) β†’ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
6362imp 407 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ 𝑀 ∈ (2 WWalksN 𝐺)) β†’ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) β†’ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀))
6463pm4.71d 562 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ 𝑀 ∈ (2 WWalksN 𝐺)) β†’ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ↔ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)))
6564bicomd 222 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) ∧ 𝑀 ∈ (2 WWalksN 𝐺)) β†’ ((((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀) ↔ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)))
6665rabbidva 3439 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ {𝑀 ∈ (2 WWalksN 𝐺) ∣ (((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀)} = {𝑀 ∈ (2 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)})
679, 66eqtrd 2772 . 2 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ {𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀} = {𝑀 ∈ (2 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)})
6823iswspthsnon 29148 . 2 (𝐴(2 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(2 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀}
6923iswwlksnon 29145 . 2 (𝐴(2 WWalksNOn 𝐺)𝐡) = {𝑀 ∈ (2 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜2) = 𝐡)}
7067, 68, 693eqtr4g 2797 1 ((𝐺 ∈ USGraph ∧ 𝐴 β‰  𝐡) β†’ (𝐴(2 WSPathsNOn 𝐺)𝐡) = (𝐴(2 WWalksNOn 𝐺)𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  0cc0 11112  2c2 12269  β„•0cn0 12474  ...cfz 13486  β™―chash 14292  Vtxcvtx 28294  UPGraphcupgr 28378  USGraphcusgr 28447  Walkscwlks 28891  WalksOncwlkson 28892  SPathsOncspthson 29010   WWalksN cwwlksn 29118   WWalksNOn cwwlksnon 29119   WSPathsNOn cwwspthsnon 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-ac 10113  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-hash 14293  df-word 14467  df-concat 14523  df-s1 14548  df-s2 14801  df-s3 14802  df-edg 28346  df-uhgr 28356  df-upgr 28380  df-umgr 28381  df-uspgr 28448  df-usgr 28449  df-wlks 28894  df-wlkson 28895  df-trls 28987  df-trlson 28988  df-pths 29011  df-spths 29012  df-pthson 29013  df-spthson 29014  df-wwlks 29122  df-wwlksn 29123  df-wwlksnon 29124  df-wspthsnon 29126
This theorem is referenced by:  usgr2wspthons3  29256  frgr2wsp1  29621
  Copyright terms: Public domain W3C validator