Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wpthswwlks2on Structured version   Visualization version   GIF version

Theorem wpthswwlks2on 27846
 Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 13-May-2021.) (Revised by AV, 16-Mar-2022.)
Assertion
Ref Expression
wpthswwlks2on ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))

Proof of Theorem wpthswwlks2on
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlknon 27742 . . . . . . 7 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))
21a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
32anbi1d 632 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
4 3anass 1092 . . . . . . 7 ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
54anbi1i 626 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6 anass 472 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
75, 6bitri 278 . . . . 5 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
83, 7bitrdi 290 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))))
98rabbidva2 3388 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)})
10 usgrupgr 27074 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
11 wlklnwwlknupgr 27771 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1210, 11syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1312bicomd 226 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
1413adantr 484 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
15 simprl 770 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑤)
16 simprl 770 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘0) = 𝐴)
1716adantr 484 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘0) = 𝐴)
18 fveq2 6658 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 2 → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
1918ad2antll 728 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
20 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘2) = 𝐵)
2120adantr 484 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘2) = 𝐵)
2219, 21eqtrd 2793 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = 𝐵)
23 eqid 2758 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = (Vtx‘𝐺)
2423wlkp 27505 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑤𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
25 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → (0...(♯‘𝑓)) = (0...2))
2625feq2d 6484 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → (𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑤:(0...2)⟶(Vtx‘𝐺)))
2724, 26syl5ibcom 248 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑤 → ((♯‘𝑓) = 2 → 𝑤:(0...2)⟶(Vtx‘𝐺)))
2827imp 410 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑤:(0...2)⟶(Vtx‘𝐺))
29 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 𝑤:(0...2)⟶(Vtx‘𝐺))
30 2nn0 11951 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
31 0elfz 13053 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℕ0 → 0 ∈ (0...2))
3230, 31mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 0 ∈ (0...2))
3329, 32ffvelrnd 6843 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
34 nn0fz0 13054 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℕ0 ↔ 2 ∈ (0...2))
3530, 34mpbi 233 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0...2)
3635a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 2 ∈ (0...2))
3729, 36ffvelrnd 6843 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘2) ∈ (Vtx‘𝐺))
3833, 37jca 515 . . . . . . . . . . . . . . . . . . 19 (𝑤:(0...2)⟶(Vtx‘𝐺) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
3928, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
40 eleq1 2839 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘0) = 𝐴 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝐴 ∈ (Vtx‘𝐺)))
41 eleq1 2839 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘2) = 𝐵 → ((𝑤‘2) ∈ (Vtx‘𝐺) ↔ 𝐵 ∈ (Vtx‘𝐺)))
4240, 41bi2anan9 638 . . . . . . . . . . . . . . . . . 18 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4339, 42syl5ib 247 . . . . . . . . . . . . . . . . 17 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4443adantl 485 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4544imp 410 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
46 vex 3413 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
47 vex 3413 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
4846, 47pm3.2i 474 . . . . . . . . . . . . . . 15 (𝑓 ∈ V ∧ 𝑤 ∈ V)
4923iswlkon 27546 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑤 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5045, 48, 49sylancl 589 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5115, 17, 22, 50mpbir3and 1339 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤)
52 simplll 774 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐺 ∈ USGraph)
53 simprr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2)
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐴𝐵)
55 usgr2wlkspth 27647 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (♯‘𝑓) = 2 ∧ 𝐴𝐵) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5652, 53, 54, 55syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5751, 56mpbid 235 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
5857ex 416 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5958eximdv 1918 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6059ex 416 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6160com23 86 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6214, 61sylbid 243 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6362imp 410 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6463pm4.71d 565 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6564bicomd 226 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → ((((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
6665rabbidva 3390 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
679, 66eqtrd 2793 . 2 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
6823iswspthsnon 27741 . 2 (𝐴(2 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
6923iswwlksnon 27738 . 2 (𝐴(2 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}
7067, 68, 693eqtr4g 2818 1 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2951  {crab 3074  Vcvv 3409   class class class wbr 5032  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  0cc0 10575  2c2 11729  ℕ0cn0 11934  ...cfz 12939  ♯chash 13740  Vtxcvtx 26888  UPGraphcupgr 26972  USGraphcusgr 27041  Walkscwlks 27485  WalksOncwlkson 27486  SPathsOncspthson 27603   WWalksN cwwlksn 27711   WWalksNOn cwwlksnon 27712   WSPathsNOn cwwspthsnon 27714 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-ac2 9923  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363  df-card 9401  df-ac 9576  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-s3 14258  df-edg 26940  df-uhgr 26950  df-upgr 26974  df-umgr 26975  df-uspgr 27042  df-usgr 27043  df-wlks 27488  df-wlkson 27489  df-trls 27581  df-trlson 27582  df-pths 27604  df-spths 27605  df-pthson 27606  df-spthson 27607  df-wwlks 27715  df-wwlksn 27716  df-wwlksnon 27717  df-wspthsnon 27719 This theorem is referenced by:  usgr2wspthons3  27849  frgr2wsp1  28214
 Copyright terms: Public domain W3C validator