Step | Hyp | Ref
| Expression |
1 | | wwlknon 28123 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) |
2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
3 | 2 | anbi1d 629 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
4 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
5 | 4 | anbi1i 623 |
. . . . . 6
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
6 | | anass 468 |
. . . . . 6
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
7 | 5, 6 | bitri 274 |
. . . . 5
⊢ (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
8 | 3, 7 | bitrdi 286 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))) |
9 | 8 | rabbidva2 3400 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)}) |
10 | | usgrupgr 27455 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UPGraph) |
11 | | wlklnwwlknupgr 28152 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph →
(∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺))) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph →
(∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺))) |
13 | 12 | bicomd 222 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2))) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2))) |
15 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑤) |
16 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘0) = 𝐴) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘0) = 𝐴) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑓) =
2 → (𝑤‘(♯‘𝑓)) = (𝑤‘2)) |
19 | 18 | ad2antll 725 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = (𝑤‘2)) |
20 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘2) = 𝐵) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘2) = 𝐵) |
22 | 19, 21 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = 𝐵) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
24 | 23 | wlkp 27886 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓(Walks‘𝐺)𝑤 → 𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺)) |
25 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑓) =
2 → (0...(♯‘𝑓)) = (0...2)) |
26 | 25 | feq2d 6570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑓) =
2 → (𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑤:(0...2)⟶(Vtx‘𝐺))) |
27 | 24, 26 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓(Walks‘𝐺)𝑤 → ((♯‘𝑓) = 2 → 𝑤:(0...2)⟶(Vtx‘𝐺))) |
28 | 27 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑤:(0...2)⟶(Vtx‘𝐺)) |
29 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 𝑤:(0...2)⟶(Vtx‘𝐺)) |
30 | | 2nn0 12180 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ0 |
31 | | 0elfz 13282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (2 ∈
ℕ0 → 0 ∈ (0...2)) |
32 | 30, 31 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 0 ∈
(0...2)) |
33 | 29, 32 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺)) |
34 | | nn0fz0 13283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℕ0 ↔ 2 ∈ (0...2)) |
35 | 30, 34 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
(0...2) |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → 2 ∈
(0...2)) |
37 | 29, 36 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘2) ∈ (Vtx‘𝐺)) |
38 | 33, 37 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤:(0...2)⟶(Vtx‘𝐺) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺))) |
39 | 28, 38 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺))) |
40 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤‘0) = 𝐴 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝐴 ∈ (Vtx‘𝐺))) |
41 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤‘2) = 𝐵 → ((𝑤‘2) ∈ (Vtx‘𝐺) ↔ 𝐵 ∈ (Vtx‘𝐺))) |
42 | 40, 41 | bi2anan9 635 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
43 | 39, 42 | syl5ib 243 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))) |
45 | 44 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
46 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
47 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑤 ∈ V |
48 | 46, 47 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ V ∧ 𝑤 ∈ V) |
49 | 23 | iswlkon 27927 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑤 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵))) |
50 | 45, 48, 49 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵))) |
51 | 15, 17, 22, 50 | mpbir3and 1340 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤) |
52 | | simplll 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐺 ∈ USGraph) |
53 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2) |
54 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐴 ≠ 𝐵) |
55 | | usgr2wlkspth 28028 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝑓) = 2 ∧
𝐴 ≠ 𝐵) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
56 | 52, 53, 54, 55 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
57 | 51, 56 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) |
58 | 57 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
59 | 58 | eximdv 1921 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
60 | 59 | ex 412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
61 | 60 | com23 86 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
62 | 14, 61 | sylbid 239 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
63 | 62 | imp 406 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)) |
64 | 63 | pm4.71d 561 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))) |
65 | 64 | bicomd 222 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → ((((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))) |
66 | 65 | rabbidva 3402 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}) |
67 | 9, 66 | eqtrd 2778 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}) |
68 | 23 | iswspthsnon 28122 |
. 2
⊢ (𝐴(2 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} |
69 | 23 | iswwlksnon 28119 |
. 2
⊢ (𝐴(2 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)} |
70 | 67, 68, 69 | 3eqtr4g 2804 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵)) |