MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wpthswwlks2on Structured version   Visualization version   GIF version

Theorem wpthswwlks2on 27747
Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 13-May-2021.) (Revised by AV, 16-Mar-2022.)
Assertion
Ref Expression
wpthswwlks2on ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))

Proof of Theorem wpthswwlks2on
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlknon 27643 . . . . . . 7 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵))
21a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
32anbi1d 632 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
4 3anass 1092 . . . . . . 7 ((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
54anbi1i 626 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6 anass 472 . . . . . 6 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
75, 6bitri 278 . . . . 5 (((𝑤 ∈ (2 WWalksN 𝐺) ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
83, 7syl6bb 290 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ (𝑤 ∈ (2 WWalksN 𝐺) ∧ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))))
98rabbidva2 3423 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)})
10 usgrupgr 26975 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
11 wlklnwwlknupgr 27672 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1210, 11syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) ↔ 𝑤 ∈ (2 WWalksN 𝐺)))
1312bicomd 226 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
1413adantr 484 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)))
15 simprl 770 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑤)
16 simprl 770 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘0) = 𝐴)
1716adantr 484 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘0) = 𝐴)
18 fveq2 6645 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 2 → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
1918ad2antll 728 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = (𝑤‘2))
20 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (𝑤‘2) = 𝐵)
2120adantr 484 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘2) = 𝐵)
2219, 21eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑤‘(♯‘𝑓)) = 𝐵)
23 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = (Vtx‘𝐺)
2423wlkp 27406 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑤𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
25 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑓) = 2 → (0...(♯‘𝑓)) = (0...2))
2625feq2d 6473 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = 2 → (𝑤:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑤:(0...2)⟶(Vtx‘𝐺)))
2724, 26syl5ibcom 248 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑤 → ((♯‘𝑓) = 2 → 𝑤:(0...2)⟶(Vtx‘𝐺)))
2827imp 410 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑤:(0...2)⟶(Vtx‘𝐺))
29 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 𝑤:(0...2)⟶(Vtx‘𝐺))
30 2nn0 11902 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
31 0elfz 12999 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℕ0 → 0 ∈ (0...2))
3230, 31mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 0 ∈ (0...2))
3329, 32ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘0) ∈ (Vtx‘𝐺))
34 nn0fz0 13000 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℕ0 ↔ 2 ∈ (0...2))
3530, 34mpbi 233 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0...2)
3635a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑤:(0...2)⟶(Vtx‘𝐺) → 2 ∈ (0...2))
3729, 36ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑤:(0...2)⟶(Vtx‘𝐺) → (𝑤‘2) ∈ (Vtx‘𝐺))
3833, 37jca 515 . . . . . . . . . . . . . . . . . . 19 (𝑤:(0...2)⟶(Vtx‘𝐺) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
3928, 38syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)))
40 eleq1 2877 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘0) = 𝐴 → ((𝑤‘0) ∈ (Vtx‘𝐺) ↔ 𝐴 ∈ (Vtx‘𝐺)))
41 eleq1 2877 . . . . . . . . . . . . . . . . . . 19 ((𝑤‘2) = 𝐵 → ((𝑤‘2) ∈ (Vtx‘𝐺) ↔ 𝐵 ∈ (Vtx‘𝐺)))
4240, 41bi2anan9 638 . . . . . . . . . . . . . . . . . 18 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (((𝑤‘0) ∈ (Vtx‘𝐺) ∧ (𝑤‘2) ∈ (Vtx‘𝐺)) ↔ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4339, 42syl5ib 247 . . . . . . . . . . . . . . . . 17 (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4443adantl 485 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))))
4544imp 410 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
46 vex 3444 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
47 vex 3444 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
4846, 47pm3.2i 474 . . . . . . . . . . . . . . 15 (𝑓 ∈ V ∧ 𝑤 ∈ V)
4923iswlkon 27447 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑓 ∈ V ∧ 𝑤 ∈ V)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5045, 48, 49sylancl 589 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤 ↔ (𝑓(Walks‘𝐺)𝑤 ∧ (𝑤‘0) = 𝐴 ∧ (𝑤‘(♯‘𝑓)) = 𝐵)))
5115, 17, 22, 50mpbir3and 1339 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤)
52 simplll 774 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐺 ∈ USGraph)
53 simprr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2)
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝐴𝐵)
55 usgr2wlkspth 27548 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ (♯‘𝑓) = 2 ∧ 𝐴𝐵) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5652, 53, 54, 55syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5751, 56mpbid 235 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) ∧ (𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2)) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)
5857ex 416 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → ((𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
5958eximdv 1918 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6059ex 416 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6160com23 86 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (∃𝑓(𝑓(Walks‘𝐺)𝑤 ∧ (♯‘𝑓) = 2) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6214, 61sylbid 243 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝑤 ∈ (2 WWalksN 𝐺) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6362imp 410 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤))
6463pm4.71d 565 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ↔ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)))
6564bicomd 226 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐴𝐵) ∧ 𝑤 ∈ (2 WWalksN 𝐺)) → ((((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤) ↔ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)))
6665rabbidva 3425 . . 3 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (2 WWalksN 𝐺) ∣ (((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤)} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
679, 66eqtrd 2833 . 2 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)})
6823iswspthsnon 27642 . 2 (𝐴(2 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
6923iswwlksnon 27639 . 2 (𝐴(2 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (2 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘2) = 𝐵)}
7067, 68, 693eqtr4g 2858 1 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  {crab 3110  Vcvv 3441   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  2c2 11680  0cn0 11885  ...cfz 12885  chash 13686  Vtxcvtx 26789  UPGraphcupgr 26873  USGraphcusgr 26942  Walkscwlks 27386  WalksOncwlkson 27387  SPathsOncspthson 27504   WWalksN cwwlksn 27612   WWalksNOn cwwlksnon 27613   WSPathsNOn cwwspthsnon 27615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-wlks 27389  df-wlkson 27390  df-trls 27482  df-trlson 27483  df-pths 27505  df-spths 27506  df-pthson 27507  df-spthson 27508  df-wwlks 27616  df-wwlksn 27617  df-wwlksnon 27618  df-wspthsnon 27620
This theorem is referenced by:  usgr2wspthons3  27750  frgr2wsp1  28115
  Copyright terms: Public domain W3C validator