Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd Structured version   Visualization version   GIF version

 Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
Assertion
Ref Expression
ovnsubadd (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝜑,𝑛

Dummy variables 𝑎 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 𝑧 𝑏 𝑑 𝑓 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6647 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
32adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
4 ovnsubadd.2 . . . . . . . . . . . 12 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
54adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
6 simpr 488 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
75, 6ffvelrnd 6829 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
8 elpwi 4506 . . . . . . . . . 10 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
109ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
11 iunss 4932 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1210, 11sylibr 237 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1312adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
14 oveq2 7143 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1514adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1613, 15sseqtrd 3955 . . . . 5 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m ∅))
1716ovn0val 43204 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
183, 17eqtrd 2833 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
19 nnex 11633 . . . . . 6 ℕ ∈ V
2019a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
21 ovnsubadd.1 . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2221adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
2322, 9ovncl 43221 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴𝑛)) ∈ (0[,]+∞))
24 eqid 2798 . . . . . 6 (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))) = (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))
2523, 24fmptd 6855 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))):ℕ⟶(0[,]+∞))
2620, 25sge0ge0 43038 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2726adantr 484 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2818, 27eqbrtrd 5052 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2921, 12ovnxrcl 43223 . . . 4 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3029adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3120, 25sge0xrcl 43039 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3231adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3321ad2antrr 725 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ∈ Fin)
34 neqne 2995 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
3534ad2antlr 726 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ≠ ∅)
364ad2antrr 725 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
37 simpr 488 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
38 eqid 2798 . . . 4 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
39 sseq1 3940 . . . . . 6 (𝑏 = 𝑎 → (𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
4039rabbidv 3427 . . . . 5 (𝑏 = 𝑎 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4140cbvmptv 5133 . . . 4 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
42 eqid 2798 . . . 4 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
43 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 = 𝑗 → (𝑙𝑜) = (𝑙𝑗))
4443coeq2d 5697 . . . . . . . . . . . . . . . . . . . 20 (𝑜 = 𝑗 → ([,) ∘ (𝑙𝑜)) = ([,) ∘ (𝑙𝑗)))
4544fveq1d 6647 . . . . . . . . . . . . . . . . . . 19 (𝑜 = 𝑗 → (([,) ∘ (𝑙𝑜))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑑))
4645ixpeq2dv 8462 . . . . . . . . . . . . . . . . . 18 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑))
47 fveq2 6645 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑘 → (([,) ∘ (𝑙𝑗))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑘))
4847cbvixpv 8464 . . . . . . . . . . . . . . . . . 18 X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
4946, 48eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5049cbviunv 4927 . . . . . . . . . . . . . . . 16 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
5150sseq2i 3944 . . . . . . . . . . . . . . 15 (𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) ↔ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5251rabbii 3420 . . . . . . . . . . . . . 14 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}
5352mpteq2i 5122 . . . . . . . . . . . . 13 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
5453fveq1i 6646 . . . . . . . . . . . 12 ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑)
55 fveq2 6645 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5654, 55syl5eq 2845 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5756eleq2d 2875 . . . . . . . . . 10 (𝑑 = 𝑎 → (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ↔ 𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎)))
58 2fveq3 6650 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑘 → (vol‘(([,) ∘ )‘𝑑)) = (vol‘(([,) ∘ )‘𝑘)))
5958cbvprodv 15264 . . . . . . . . . . . . . . . . 17 𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)) = ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))
6059mpteq2i 5122 . . . . . . . . . . . . . . . 16 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
62 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → (𝑚𝑜) = (𝑚𝑗))
6361, 62fveq12d 6652 . . . . . . . . . . . . . 14 (𝑜 = 𝑗 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6463cbvmptv 5133 . . . . . . . . . . . . 13 (𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6564fveq2i 6648 . . . . . . . . . . . 12 ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))))
6665a1i 11 . . . . . . . . . . 11 (𝑑 = 𝑎 → (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))))
67 fveq2 6645 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((voln*‘𝑋)‘𝑑) = ((voln*‘𝑋)‘𝑎))
6867oveq1d 7150 . . . . . . . . . . 11 (𝑑 = 𝑎 → (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))
6966, 68breq12d 5043 . . . . . . . . . 10 (𝑑 = 𝑎 → ((Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7057, 69anbi12d 633 . . . . . . . . 9 (𝑑 = 𝑎 → ((𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∧ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)) ↔ (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))))
7170rabbidva2 3423 . . . . . . . 8 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
72 fveq1 6644 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑚𝑗) = (𝑖𝑗))
7372fveq2d 6649 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))
7473mpteq2dv 5126 . . . . . . . . . . 11 (𝑚 = 𝑖 → (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗))))
7574fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))))
7675breq1d 5040 . . . . . . . . 9 (𝑚 = 𝑖 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7776cbvrabv 3439 . . . . . . . 8 {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}
7871, 77eqtrdi 2849 . . . . . . 7 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
7978mpteq2dv 5126 . . . . . 6 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}))
80 oveq2 7143 . . . . . . . . 9 (𝑓 = 𝑒 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑒))
8180breq2d 5042 . . . . . . . 8 (𝑓 = 𝑒 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)))
8281rabbidv 3427 . . . . . . 7 (𝑓 = 𝑒 → {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8382cbvmptv 5133 . . . . . 6 (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8479, 83eqtrdi 2849 . . . . 5 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8584cbvmptv 5133 . . . 4 (𝑑 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8633, 35, 36, 37, 38, 41, 42, 85ovnsubaddlem2 43225 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝑦))
8730, 32, 86xrlexaddrp 41999 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
8828, 87pm2.61dan 812 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  ∪ ciun 4881   class class class wbr 5030   ↦ cmpt 5110   × cxp 5517   ∘ ccom 5523  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391  Xcixp 8446  Fincfn 8494  ℝcr 10527  0cc0 10528  +∞cpnf 10663  ℝ*cxr 10665   ≤ cle 10667  ℕcn 11627  ℝ+crp 12379   +𝑒 cxad 12495  [,)cico 12730  [,]cicc 12731  ∏cprod 15253  volcvol 24074  Σ^csumge0 43016  voln*covoln 43190 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cc 9848  ax-ac2 9876  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-tpos 7877  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-acn 9357  df-ac 9529  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18271  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19500  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-cnfld 20095  df-top 21506  df-topon 21523  df-bases 21558  df-cmp 21999  df-ovol 24075  df-vol 24076  df-sumge0 43017  df-ovoln 43191 This theorem is referenced by:  ovnome  43227  ovnsubadd2lem  43299
 Copyright terms: Public domain W3C validator