Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd Structured version   Visualization version   GIF version

Theorem ovnsubadd 46553
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubadd.1 (𝜑𝑋 ∈ Fin)
ovnsubadd.2 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
Assertion
Ref Expression
ovnsubadd (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd
Dummy variables 𝑎 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 𝑧 𝑏 𝑑 𝑓 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6824 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
32adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
4 ovnsubadd.2 . . . . . . . . . . . 12 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
54adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
6 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
75, 6ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
8 elpwi 4558 . . . . . . . . . 10 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
109ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
11 iunss 4994 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1210, 11sylibr 234 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1312adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
14 oveq2 7357 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1514adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1613, 15sseqtrd 3972 . . . . 5 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m ∅))
1716ovn0val 46531 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
183, 17eqtrd 2764 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
19 nnex 12134 . . . . . 6 ℕ ∈ V
2019a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
21 ovnsubadd.1 . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2221adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
2322, 9ovncl 46548 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴𝑛)) ∈ (0[,]+∞))
24 eqid 2729 . . . . . 6 (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))) = (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))
2523, 24fmptd 7048 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))):ℕ⟶(0[,]+∞))
2620, 25sge0ge0 46365 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2726adantr 480 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2818, 27eqbrtrd 5114 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2921, 12ovnxrcl 46550 . . . 4 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3029adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3120, 25sge0xrcl 46366 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3231adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3321ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ∈ Fin)
34 neqne 2933 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
3534ad2antlr 727 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ≠ ∅)
364ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
37 simpr 484 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
38 eqid 2729 . . . 4 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
39 sseq1 3961 . . . . . 6 (𝑏 = 𝑎 → (𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
4039rabbidv 3402 . . . . 5 (𝑏 = 𝑎 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4140cbvmptv 5196 . . . 4 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
42 eqid 2729 . . . 4 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
43 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 = 𝑗 → (𝑙𝑜) = (𝑙𝑗))
4443coeq2d 5805 . . . . . . . . . . . . . . . . . . . 20 (𝑜 = 𝑗 → ([,) ∘ (𝑙𝑜)) = ([,) ∘ (𝑙𝑗)))
4544fveq1d 6824 . . . . . . . . . . . . . . . . . . 19 (𝑜 = 𝑗 → (([,) ∘ (𝑙𝑜))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑑))
4645ixpeq2dv 8840 . . . . . . . . . . . . . . . . . 18 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑))
47 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑘 → (([,) ∘ (𝑙𝑗))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑘))
4847cbvixpv 8842 . . . . . . . . . . . . . . . . . 18 X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
4946, 48eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5049cbviunv 4989 . . . . . . . . . . . . . . . 16 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
5150sseq2i 3965 . . . . . . . . . . . . . . 15 (𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) ↔ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5251rabbii 3400 . . . . . . . . . . . . . 14 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}
5352mpteq2i 5188 . . . . . . . . . . . . 13 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
5453fveq1i 6823 . . . . . . . . . . . 12 ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑)
55 fveq2 6822 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5654, 55eqtrid 2776 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5756eleq2d 2814 . . . . . . . . . 10 (𝑑 = 𝑎 → (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ↔ 𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎)))
58 2fveq3 6827 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑘 → (vol‘(([,) ∘ )‘𝑑)) = (vol‘(([,) ∘ )‘𝑘)))
5958cbvprodv 15821 . . . . . . . . . . . . . . . . 17 𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)) = ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))
6059mpteq2i 5188 . . . . . . . . . . . . . . . 16 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
62 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → (𝑚𝑜) = (𝑚𝑗))
6361, 62fveq12d 6829 . . . . . . . . . . . . . 14 (𝑜 = 𝑗 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6463cbvmptv 5196 . . . . . . . . . . . . 13 (𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6564fveq2i 6825 . . . . . . . . . . . 12 ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))))
6665a1i 11 . . . . . . . . . . 11 (𝑑 = 𝑎 → (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))))
67 fveq2 6822 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((voln*‘𝑋)‘𝑑) = ((voln*‘𝑋)‘𝑎))
6867oveq1d 7364 . . . . . . . . . . 11 (𝑑 = 𝑎 → (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))
6966, 68breq12d 5105 . . . . . . . . . 10 (𝑑 = 𝑎 → ((Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7057, 69anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑎 → ((𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∧ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)) ↔ (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))))
7170rabbidva2 3396 . . . . . . . 8 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
72 fveq1 6821 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑚𝑗) = (𝑖𝑗))
7372fveq2d 6826 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))
7473mpteq2dv 5186 . . . . . . . . . . 11 (𝑚 = 𝑖 → (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗))))
7574fveq2d 6826 . . . . . . . . . 10 (𝑚 = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))))
7675breq1d 5102 . . . . . . . . 9 (𝑚 = 𝑖 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7776cbvrabv 3405 . . . . . . . 8 {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}
7871, 77eqtrdi 2780 . . . . . . 7 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
7978mpteq2dv 5186 . . . . . 6 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}))
80 oveq2 7357 . . . . . . . . 9 (𝑓 = 𝑒 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑒))
8180breq2d 5104 . . . . . . . 8 (𝑓 = 𝑒 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)))
8281rabbidv 3402 . . . . . . 7 (𝑓 = 𝑒 → {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8382cbvmptv 5196 . . . . . 6 (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8479, 83eqtrdi 2780 . . . . 5 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8584cbvmptv 5196 . . . 4 (𝑑 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8633, 35, 36, 37, 38, 41, 42, 85ovnsubaddlem2 46552 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝑦))
8730, 32, 86xrlexaddrp 45332 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
8828, 87pm2.61dan 812 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   ciun 4941   class class class wbr 5092  cmpt 5173   × cxp 5617  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  Xcixp 8824  Fincfn 8872  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148  cle 11150  cn 12128  +crp 12893   +𝑒 cxad 13012  [,)cico 13250  [,]cicc 13251  cprod 15810  volcvol 25362  Σ^csumge0 46343  voln*covoln 46517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-sumge0 46344  df-ovoln 46518
This theorem is referenced by:  ovnome  46554  ovnsubadd2lem  46626
  Copyright terms: Public domain W3C validator