Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd Structured version   Visualization version   GIF version

Theorem ovnsubadd 42848
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubadd.1 (𝜑𝑋 ∈ Fin)
ovnsubadd.2 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
Assertion
Ref Expression
ovnsubadd (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd
Dummy variables 𝑎 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 𝑧 𝑏 𝑑 𝑓 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . . 6 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
21fveq1d 6666 . . . . 5 (𝑋 = ∅ → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
32adantl 484 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)))
4 ovnsubadd.2 . . . . . . . . . . . 12 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
54adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
6 simpr 487 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
75, 6ffvelrnd 6846 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
8 elpwi 4550 . . . . . . . . . 10 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
109ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
11 iunss 4961 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1210, 11sylibr 236 . . . . . . 7 (𝜑 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1312adantr 483 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
14 oveq2 7158 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1514adantl 484 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
1613, 15sseqtrd 4006 . . . . 5 ((𝜑𝑋 = ∅) → 𝑛 ∈ ℕ (𝐴𝑛) ⊆ (ℝ ↑m ∅))
1716ovn0val 42826 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
183, 17eqtrd 2856 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) = 0)
19 nnex 11638 . . . . . 6 ℕ ∈ V
2019a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
21 ovnsubadd.1 . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2221adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
2322, 9ovncl 42843 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴𝑛)) ∈ (0[,]+∞))
24 eqid 2821 . . . . . 6 (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))) = (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))
2523, 24fmptd 6872 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛))):ℕ⟶(0[,]+∞))
2620, 25sge0ge0 42660 . . . 4 (𝜑 → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2726adantr 483 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2818, 27eqbrtrd 5080 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
2921, 12ovnxrcl 42845 . . . 4 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3029adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ∈ ℝ*)
3120, 25sge0xrcl 42661 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3231adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) ∈ ℝ*)
3321ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ∈ Fin)
34 neqne 3024 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
3534ad2antlr 725 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑋 ≠ ∅)
364ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
37 simpr 487 . . . 4 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
38 eqid 2821 . . . 4 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
39 sseq1 3991 . . . . . 6 (𝑏 = 𝑎 → (𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
4039rabbidv 3480 . . . . 5 (𝑏 = 𝑎 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4140cbvmptv 5161 . . . 4 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
42 eqid 2821 . . . 4 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
43 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 = 𝑗 → (𝑙𝑜) = (𝑙𝑗))
4443coeq2d 5727 . . . . . . . . . . . . . . . . . . . 20 (𝑜 = 𝑗 → ([,) ∘ (𝑙𝑜)) = ([,) ∘ (𝑙𝑗)))
4544fveq1d 6666 . . . . . . . . . . . . . . . . . . 19 (𝑜 = 𝑗 → (([,) ∘ (𝑙𝑜))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑑))
4645ixpeq2dv 8471 . . . . . . . . . . . . . . . . . 18 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑))
47 fveq2 6664 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑘 → (([,) ∘ (𝑙𝑗))‘𝑑) = (([,) ∘ (𝑙𝑗))‘𝑘))
4847cbvixpv 8473 . . . . . . . . . . . . . . . . . 18 X𝑑𝑋 (([,) ∘ (𝑙𝑗))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
4946, 48syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑜 = 𝑗X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5049cbviunv 4957 . . . . . . . . . . . . . . . 16 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)
5150sseq2i 3995 . . . . . . . . . . . . . . 15 (𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑) ↔ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘))
5251rabbii 3473 . . . . . . . . . . . . . 14 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}
5352mpteq2i 5150 . . . . . . . . . . . . 13 (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
5453fveq1i 6665 . . . . . . . . . . . 12 ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑)
55 fveq2 6664 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5654, 55syl5eq 2868 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) = ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎))
5756eleq2d 2898 . . . . . . . . . 10 (𝑑 = 𝑎 → (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ↔ 𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎)))
58 2fveq3 6669 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑘 → (vol‘(([,) ∘ )‘𝑑)) = (vol‘(([,) ∘ )‘𝑘)))
5958cbvprodv 15264 . . . . . . . . . . . . . . . . 17 𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)) = ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))
6059mpteq2i 5150 . . . . . . . . . . . . . . . 16 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
62 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑜 = 𝑗 → (𝑚𝑜) = (𝑚𝑗))
6361, 62fveq12d 6671 . . . . . . . . . . . . . 14 (𝑜 = 𝑗 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6463cbvmptv 5161 . . . . . . . . . . . . 13 (𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))
6564fveq2i 6667 . . . . . . . . . . . 12 ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))))
6665a1i 11 . . . . . . . . . . 11 (𝑑 = 𝑎 → (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))))
67 fveq2 6664 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((voln*‘𝑋)‘𝑑) = ((voln*‘𝑋)‘𝑎))
6867oveq1d 7165 . . . . . . . . . . 11 (𝑑 = 𝑎 → (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))
6966, 68breq12d 5071 . . . . . . . . . 10 (𝑑 = 𝑎 → ((Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7057, 69anbi12d 632 . . . . . . . . 9 (𝑑 = 𝑎 → ((𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∧ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)) ↔ (𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓))))
7170rabbidva2 3476 . . . . . . . 8 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
72 fveq1 6663 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑚𝑗) = (𝑖𝑗))
7372fveq2d 6668 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)) = (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))
7473mpteq2dv 5154 . . . . . . . . . . 11 (𝑚 = 𝑖 → (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗))) = (𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗))))
7574fveq2d 6668 . . . . . . . . . 10 (𝑚 = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))))
7675breq1d 5068 . . . . . . . . 9 (𝑚 = 𝑖 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)))
7776cbvrabv 3491 . . . . . . . 8 {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑚𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}
7871, 77syl6eq 2872 . . . . . . 7 (𝑑 = 𝑎 → {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)})
7978mpteq2dv 5154 . . . . . 6 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}))
80 oveq2 7158 . . . . . . . . 9 (𝑓 = 𝑒 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) = (((voln*‘𝑋)‘𝑎) +𝑒 𝑒))
8180breq2d 5070 . . . . . . . 8 (𝑓 = 𝑒 → ((Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)))
8281rabbidv 3480 . . . . . . 7 (𝑓 = 𝑒 → {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)} = {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8382cbvmptv 5161 . . . . . 6 (𝑓 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})
8479, 83syl6eq 2872 . . . . 5 (𝑑 = 𝑎 → (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8584cbvmptv 5161 . . . 4 (𝑑 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑓 ∈ ℝ+ ↦ {𝑚 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑜 ∈ ℕ X𝑑𝑋 (([,) ∘ (𝑙𝑜))‘𝑑)})‘𝑑) ∣ (Σ^‘(𝑜 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑑𝑋 (vol‘(([,) ∘ )‘𝑑)))‘(𝑚𝑜)))) ≤ (((voln*‘𝑋)‘𝑑) +𝑒 𝑓)})) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ ((𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})‘𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
8633, 35, 36, 37, 38, 41, 42, 85ovnsubaddlem2 42847 . . 3 (((𝜑 ∧ ¬ 𝑋 = ∅) ∧ 𝑦 ∈ ℝ+) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝑦))
8730, 32, 86xrlexaddrp 41613 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
8828, 87pm2.61dan 811 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  𝒫 cpw 4538   ciun 4911   class class class wbr 5058  cmpt 5138   × cxp 5547  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  Xcixp 8455  Fincfn 8503  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668  cle 10670  cn 11632  +crp 12383   +𝑒 cxad 12499  [,)cico 12734  [,]cicc 12735  cprod 15253  volcvol 24058  Σ^csumge0 42638  voln*covoln 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42639  df-ovoln 42813
This theorem is referenced by:  ovnome  42849  ovnsubadd2lem  42921
  Copyright terms: Public domain W3C validator