MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1 Structured version   Visualization version   GIF version

Theorem clwwlknon1 29339
Description: The set of closed walks on vertex 𝑋 of length 1 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknon1.c 𝐢 = (ClWWalksNOnβ€˜πΊ)
clwwlknon1.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
clwwlknon1 (𝑋 ∈ 𝑉 β†’ (𝑋𝐢1) = {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)})
Distinct variable groups:   𝑀,𝐺   𝑀,𝑉   𝑀,𝑋
Allowed substitution hints:   𝐢(𝑀)   𝐸(𝑀)

Proof of Theorem clwwlknon1
StepHypRef Expression
1 clwwlknon1.c . . . 4 𝐢 = (ClWWalksNOnβ€˜πΊ)
21oveqi 7418 . . 3 (𝑋𝐢1) = (𝑋(ClWWalksNOnβ€˜πΊ)1)
32a1i 11 . 2 (𝑋 ∈ 𝑉 β†’ (𝑋𝐢1) = (𝑋(ClWWalksNOnβ€˜πΊ)1))
4 clwwlknon 29332 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)1) = {𝑀 ∈ (1 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
54a1i 11 . 2 (𝑋 ∈ 𝑉 β†’ (𝑋(ClWWalksNOnβ€˜πΊ)1) = {𝑀 ∈ (1 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
6 clwwlkn1 29283 . . . . 5 (𝑀 ∈ (1 ClWWalksN 𝐺) ↔ ((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
76anbi1i 624 . . . 4 ((𝑀 ∈ (1 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ↔ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋))
8 clwwlknon1.v . . . . . . . . . . . 12 𝑉 = (Vtxβ€˜πΊ)
98eqcomi 2741 . . . . . . . . . . 11 (Vtxβ€˜πΊ) = 𝑉
109wrdeqi 14483 . . . . . . . . . 10 Word (Vtxβ€˜πΊ) = Word 𝑉
1110eleq2i 2825 . . . . . . . . 9 (𝑀 ∈ Word (Vtxβ€˜πΊ) ↔ 𝑀 ∈ Word 𝑉)
1211biimpi 215 . . . . . . . 8 (𝑀 ∈ Word (Vtxβ€˜πΊ) β†’ 𝑀 ∈ Word 𝑉)
13123ad2ant2 1134 . . . . . . 7 (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) β†’ 𝑀 ∈ Word 𝑉)
1413ad2antrl 726 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ 𝑀 ∈ Word 𝑉)
1513adantr 481 . . . . . . . . 9 ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) β†’ 𝑀 ∈ Word 𝑉)
16 simpl1 1191 . . . . . . . . 9 ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) β†’ (β™―β€˜π‘€) = 1)
17 simpr 485 . . . . . . . . 9 ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋)
1815, 16, 173jca 1128 . . . . . . . 8 ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = 1 ∧ (π‘€β€˜0) = 𝑋))
1918adantl 482 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = 1 ∧ (π‘€β€˜0) = 𝑋))
20 wrdl1s1 14560 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ↔ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = 1 ∧ (π‘€β€˜0) = 𝑋)))
2120adantr 481 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ↔ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = 1 ∧ (π‘€β€˜0) = 𝑋)))
2219, 21mpbird 256 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©)
23 sneq 4637 . . . . . . . . . . . . 13 ((π‘€β€˜0) = 𝑋 β†’ {(π‘€β€˜0)} = {𝑋})
24 clwwlknon1.e . . . . . . . . . . . . . . 15 𝐸 = (Edgβ€˜πΊ)
2524eqcomi 2741 . . . . . . . . . . . . . 14 (Edgβ€˜πΊ) = 𝐸
2625a1i 11 . . . . . . . . . . . . 13 ((π‘€β€˜0) = 𝑋 β†’ (Edgβ€˜πΊ) = 𝐸)
2723, 26eleq12d 2827 . . . . . . . . . . . 12 ((π‘€β€˜0) = 𝑋 β†’ ({(π‘€β€˜0)} ∈ (Edgβ€˜πΊ) ↔ {𝑋} ∈ 𝐸))
2827biimpd 228 . . . . . . . . . . 11 ((π‘€β€˜0) = 𝑋 β†’ ({(π‘€β€˜0)} ∈ (Edgβ€˜πΊ) β†’ {𝑋} ∈ 𝐸))
2928a1i 11 . . . . . . . . . 10 (𝑋 ∈ 𝑉 β†’ ((π‘€β€˜0) = 𝑋 β†’ ({(π‘€β€˜0)} ∈ (Edgβ€˜πΊ) β†’ {𝑋} ∈ 𝐸)))
3029com13 88 . . . . . . . . 9 ({(π‘€β€˜0)} ∈ (Edgβ€˜πΊ) β†’ ((π‘€β€˜0) = 𝑋 β†’ (𝑋 ∈ 𝑉 β†’ {𝑋} ∈ 𝐸)))
31303ad2ant3 1135 . . . . . . . 8 (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) β†’ ((π‘€β€˜0) = 𝑋 β†’ (𝑋 ∈ 𝑉 β†’ {𝑋} ∈ 𝐸)))
3231imp 407 . . . . . . 7 ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) β†’ (𝑋 ∈ 𝑉 β†’ {𝑋} ∈ 𝐸))
3332impcom 408 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ {𝑋} ∈ 𝐸)
3414, 22, 33jca32 516 . . . . 5 ((𝑋 ∈ 𝑉 ∧ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) β†’ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)))
35 fveq2 6888 . . . . . . . . . 10 (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (β™―β€˜π‘€) = (β™―β€˜βŸ¨β€œπ‘‹β€βŸ©))
36 s1len 14552 . . . . . . . . . 10 (β™―β€˜βŸ¨β€œπ‘‹β€βŸ©) = 1
3735, 36eqtrdi 2788 . . . . . . . . 9 (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (β™―β€˜π‘€) = 1)
3837ad2antrl 726 . . . . . . . 8 ((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) β†’ (β™―β€˜π‘€) = 1)
3938adantl 482 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ (β™―β€˜π‘€) = 1)
408wrdeqi 14483 . . . . . . . . . 10 Word 𝑉 = Word (Vtxβ€˜πΊ)
4140eleq2i 2825 . . . . . . . . 9 (𝑀 ∈ Word 𝑉 ↔ 𝑀 ∈ Word (Vtxβ€˜πΊ))
4241biimpi 215 . . . . . . . 8 (𝑀 ∈ Word 𝑉 β†’ 𝑀 ∈ Word (Vtxβ€˜πΊ))
4342ad2antrl 726 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ 𝑀 ∈ Word (Vtxβ€˜πΊ))
44 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (π‘€β€˜0) = (βŸ¨β€œπ‘‹β€βŸ©β€˜0))
45 s1fv 14556 . . . . . . . . . . . . . . 15 (𝑋 ∈ 𝑉 β†’ (βŸ¨β€œπ‘‹β€βŸ©β€˜0) = 𝑋)
4644, 45sylan9eq 2792 . . . . . . . . . . . . . 14 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ (π‘€β€˜0) = 𝑋)
4746eqcomd 2738 . . . . . . . . . . . . 13 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 = (π‘€β€˜0))
4847sneqd 4639 . . . . . . . . . . . 12 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ {𝑋} = {(π‘€β€˜0)})
4924a1i 11 . . . . . . . . . . . 12 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ 𝐸 = (Edgβ€˜πΊ))
5048, 49eleq12d 2827 . . . . . . . . . . 11 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ ({𝑋} ∈ 𝐸 ↔ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
5150biimpd 228 . . . . . . . . . 10 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ 𝑋 ∈ 𝑉) β†’ ({𝑋} ∈ 𝐸 β†’ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
5251impancom 452 . . . . . . . . 9 ((𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸) β†’ (𝑋 ∈ 𝑉 β†’ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
5352adantl 482 . . . . . . . 8 ((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) β†’ (𝑋 ∈ 𝑉 β†’ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
5453impcom 408 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ))
5539, 43, 543jca 1128 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ ((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)))
5646ex 413 . . . . . . . 8 (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (𝑋 ∈ 𝑉 β†’ (π‘€β€˜0) = 𝑋))
5756ad2antrl 726 . . . . . . 7 ((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) β†’ (𝑋 ∈ 𝑉 β†’ (π‘€β€˜0) = 𝑋))
5857impcom 408 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ (π‘€β€˜0) = 𝑋)
5955, 58jca 512 . . . . 5 ((𝑋 ∈ 𝑉 ∧ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))) β†’ (((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋))
6034, 59impbida 799 . . . 4 (𝑋 ∈ 𝑉 β†’ ((((β™―β€˜π‘€) = 1 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))))
617, 60bitrid 282 . . 3 (𝑋 ∈ 𝑉 β†’ ((𝑀 ∈ (1 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))))
6261rabbidva2 3434 . 2 (𝑋 ∈ 𝑉 β†’ {𝑀 ∈ (1 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)})
633, 5, 623eqtrd 2776 1 (𝑋 ∈ 𝑉 β†’ (𝑋𝐢1) = {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432  {csn 4627  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107  β™―chash 14286  Word cword 14460  βŸ¨β€œcs1 14541  Vtxcvtx 28245  Edgcedg 28296   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-s1 14542  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  clwwlknon1loop  29340  clwwlknon1nloop  29341
  Copyright terms: Public domain W3C validator