MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1 Structured version   Visualization version   GIF version

Theorem clwwlknon1 29041
Description: The set of closed walks on vertex 𝑋 of length 1 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐸(𝑤)

Proof of Theorem clwwlknon1
StepHypRef Expression
1 clwwlknon1.c . . . 4 𝐶 = (ClWWalksNOn‘𝐺)
21oveqi 7370 . . 3 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
32a1i 11 . 2 (𝑋𝑉 → (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1))
4 clwwlknon 29034 . . 3 (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
54a1i 11 . 2 (𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
6 clwwlkn1 28985 . . . . 5 (𝑤 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
76anbi1i 624 . . . 4 ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
8 clwwlknon1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqcomi 2745 . . . . . . . . . . 11 (Vtx‘𝐺) = 𝑉
109wrdeqi 14425 . . . . . . . . . 10 Word (Vtx‘𝐺) = Word 𝑉
1110eleq2i 2829 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉)
1211biimpi 215 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → 𝑤 ∈ Word 𝑉)
13123ad2ant2 1134 . . . . . . 7 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word 𝑉)
1413ad2antrl 726 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 ∈ Word 𝑉)
1513adantr 481 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → 𝑤 ∈ Word 𝑉)
16 simpl1 1191 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (♯‘𝑤) = 1)
17 simpr 485 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
1815, 16, 173jca 1128 . . . . . . . 8 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
1918adantl 482 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
20 wrdl1s1 14502 . . . . . . . 8 (𝑋𝑉 → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2120adantr 481 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2219, 21mpbird 256 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 = ⟨“𝑋”⟩)
23 sneq 4596 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → {(𝑤‘0)} = {𝑋})
24 clwwlknon1.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
2524eqcomi 2745 . . . . . . . . . . . . . 14 (Edg‘𝐺) = 𝐸
2625a1i 11 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → (Edg‘𝐺) = 𝐸)
2723, 26eleq12d 2832 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) ↔ {𝑋} ∈ 𝐸))
2827biimpd 228 . . . . . . . . . . 11 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸))
2928a1i 11 . . . . . . . . . 10 (𝑋𝑉 → ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸)))
3029com13 88 . . . . . . . . 9 ({(𝑤‘0)} ∈ (Edg‘𝐺) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
31303ad2ant3 1135 . . . . . . . 8 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
3231imp 407 . . . . . . 7 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑋𝑉 → {𝑋} ∈ 𝐸))
3332impcom 408 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → {𝑋} ∈ 𝐸)
3414, 22, 33jca32 516 . . . . 5 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)))
35 fveq2 6842 . . . . . . . . . 10 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = (♯‘⟨“𝑋”⟩))
36 s1len 14494 . . . . . . . . . 10 (♯‘⟨“𝑋”⟩) = 1
3735, 36eqtrdi 2792 . . . . . . . . 9 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = 1)
3837ad2antrl 726 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (♯‘𝑤) = 1)
3938adantl 482 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (♯‘𝑤) = 1)
408wrdeqi 14425 . . . . . . . . . 10 Word 𝑉 = Word (Vtx‘𝐺)
4140eleq2i 2829 . . . . . . . . 9 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4241biimpi 215 . . . . . . . 8 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4342ad2antrl 726 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → 𝑤 ∈ Word (Vtx‘𝐺))
44 fveq1 6841 . . . . . . . . . . . . . . 15 (𝑤 = ⟨“𝑋”⟩ → (𝑤‘0) = (⟨“𝑋”⟩‘0))
45 s1fv 14498 . . . . . . . . . . . . . . 15 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
4644, 45sylan9eq 2796 . . . . . . . . . . . . . 14 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → (𝑤‘0) = 𝑋)
4746eqcomd 2742 . . . . . . . . . . . . 13 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝑋 = (𝑤‘0))
4847sneqd 4598 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → {𝑋} = {(𝑤‘0)})
4924a1i 11 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝐸 = (Edg‘𝐺))
5048, 49eleq12d 2832 . . . . . . . . . . 11 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 ↔ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5150biimpd 228 . . . . . . . . . 10 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5251impancom 452 . . . . . . . . 9 ((𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5352adantl 482 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5453impcom 408 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → {(𝑤‘0)} ∈ (Edg‘𝐺))
5539, 43, 543jca 1128 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5646ex 413 . . . . . . . 8 (𝑤 = ⟨“𝑋”⟩ → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5756ad2antrl 726 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5857impcom 408 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (𝑤‘0) = 𝑋)
5955, 58jca 512 . . . . 5 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
6034, 59impbida 799 . . . 4 (𝑋𝑉 → ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
617, 60bitrid 282 . . 3 (𝑋𝑉 → ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
6261rabbidva2 3409 . 2 (𝑋𝑉 → {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
633, 5, 623eqtrd 2780 1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  {csn 4586  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052  chash 14230  Word cword 14402  ⟨“cs1 14483  Vtxcvtx 27947  Edgcedg 27998   ClWWalksN cclwwlkn 28968  ClWWalksNOncclwwlknon 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-s1 14484  df-clwwlk 28926  df-clwwlkn 28969  df-clwwlknon 29032
This theorem is referenced by:  clwwlknon1loop  29042  clwwlknon1nloop  29043
  Copyright terms: Public domain W3C validator