MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1 Structured version   Visualization version   GIF version

Theorem clwwlknon1 28152
Description: The set of closed walks on vertex 𝑋 of length 1 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐸(𝑤)

Proof of Theorem clwwlknon1
StepHypRef Expression
1 clwwlknon1.c . . . 4 𝐶 = (ClWWalksNOn‘𝐺)
21oveqi 7215 . . 3 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
32a1i 11 . 2 (𝑋𝑉 → (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1))
4 clwwlknon 28145 . . 3 (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
54a1i 11 . 2 (𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
6 clwwlkn1 28096 . . . . 5 (𝑤 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
76anbi1i 627 . . . 4 ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
8 clwwlknon1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqcomi 2743 . . . . . . . . . . 11 (Vtx‘𝐺) = 𝑉
109wrdeqi 14075 . . . . . . . . . 10 Word (Vtx‘𝐺) = Word 𝑉
1110eleq2i 2825 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉)
1211biimpi 219 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → 𝑤 ∈ Word 𝑉)
13123ad2ant2 1136 . . . . . . 7 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word 𝑉)
1413ad2antrl 728 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 ∈ Word 𝑉)
1513adantr 484 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → 𝑤 ∈ Word 𝑉)
16 simpl1 1193 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (♯‘𝑤) = 1)
17 simpr 488 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
1815, 16, 173jca 1130 . . . . . . . 8 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
1918adantl 485 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
20 wrdl1s1 14154 . . . . . . . 8 (𝑋𝑉 → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2120adantr 484 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2219, 21mpbird 260 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 = ⟨“𝑋”⟩)
23 sneq 4541 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → {(𝑤‘0)} = {𝑋})
24 clwwlknon1.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
2524eqcomi 2743 . . . . . . . . . . . . . 14 (Edg‘𝐺) = 𝐸
2625a1i 11 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → (Edg‘𝐺) = 𝐸)
2723, 26eleq12d 2828 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) ↔ {𝑋} ∈ 𝐸))
2827biimpd 232 . . . . . . . . . . 11 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸))
2928a1i 11 . . . . . . . . . 10 (𝑋𝑉 → ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸)))
3029com13 88 . . . . . . . . 9 ({(𝑤‘0)} ∈ (Edg‘𝐺) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
31303ad2ant3 1137 . . . . . . . 8 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
3231imp 410 . . . . . . 7 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑋𝑉 → {𝑋} ∈ 𝐸))
3332impcom 411 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → {𝑋} ∈ 𝐸)
3414, 22, 33jca32 519 . . . . 5 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)))
35 fveq2 6706 . . . . . . . . . 10 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = (♯‘⟨“𝑋”⟩))
36 s1len 14146 . . . . . . . . . 10 (♯‘⟨“𝑋”⟩) = 1
3735, 36eqtrdi 2790 . . . . . . . . 9 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = 1)
3837ad2antrl 728 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (♯‘𝑤) = 1)
3938adantl 485 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (♯‘𝑤) = 1)
408wrdeqi 14075 . . . . . . . . . 10 Word 𝑉 = Word (Vtx‘𝐺)
4140eleq2i 2825 . . . . . . . . 9 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4241biimpi 219 . . . . . . . 8 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4342ad2antrl 728 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → 𝑤 ∈ Word (Vtx‘𝐺))
44 fveq1 6705 . . . . . . . . . . . . . . 15 (𝑤 = ⟨“𝑋”⟩ → (𝑤‘0) = (⟨“𝑋”⟩‘0))
45 s1fv 14150 . . . . . . . . . . . . . . 15 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
4644, 45sylan9eq 2794 . . . . . . . . . . . . . 14 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → (𝑤‘0) = 𝑋)
4746eqcomd 2740 . . . . . . . . . . . . 13 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝑋 = (𝑤‘0))
4847sneqd 4543 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → {𝑋} = {(𝑤‘0)})
4924a1i 11 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝐸 = (Edg‘𝐺))
5048, 49eleq12d 2828 . . . . . . . . . . 11 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 ↔ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5150biimpd 232 . . . . . . . . . 10 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5251impancom 455 . . . . . . . . 9 ((𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5352adantl 485 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5453impcom 411 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → {(𝑤‘0)} ∈ (Edg‘𝐺))
5539, 43, 543jca 1130 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5646ex 416 . . . . . . . 8 (𝑤 = ⟨“𝑋”⟩ → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5756ad2antrl 728 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5857impcom 411 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (𝑤‘0) = 𝑋)
5955, 58jca 515 . . . . 5 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
6034, 59impbida 801 . . . 4 (𝑋𝑉 → ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
617, 60syl5bb 286 . . 3 (𝑋𝑉 → ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
6261rabbidva2 3379 . 2 (𝑋𝑉 → {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
633, 5, 623eqtrd 2778 1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {crab 3058  {csn 4531  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713  chash 13879  Word cword 14052  ⟨“cs1 14135  Vtxcvtx 27059  Edgcedg 27110   ClWWalksN cclwwlkn 28079  ClWWalksNOncclwwlknon 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-lsw 14101  df-s1 14136  df-clwwlk 28037  df-clwwlkn 28080  df-clwwlknon 28143
This theorem is referenced by:  clwwlknon1loop  28153  clwwlknon1nloop  28154
  Copyright terms: Public domain W3C validator