Step | Hyp | Ref
| Expression |
1 | | clwwlknon1.c |
. . . 4
β’ πΆ = (ClWWalksNOnβπΊ) |
2 | 1 | oveqi 7418 |
. . 3
β’ (ππΆ1) = (π(ClWWalksNOnβπΊ)1) |
3 | 2 | a1i 11 |
. 2
β’ (π β π β (ππΆ1) = (π(ClWWalksNOnβπΊ)1)) |
4 | | clwwlknon 29332 |
. . 3
β’ (π(ClWWalksNOnβπΊ)1) = {π€ β (1 ClWWalksN πΊ) β£ (π€β0) = π} |
5 | 4 | a1i 11 |
. 2
β’ (π β π β (π(ClWWalksNOnβπΊ)1) = {π€ β (1 ClWWalksN πΊ) β£ (π€β0) = π}) |
6 | | clwwlkn1 29283 |
. . . . 5
β’ (π€ β (1 ClWWalksN πΊ) β ((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ))) |
7 | 6 | anbi1i 624 |
. . . 4
β’ ((π€ β (1 ClWWalksN πΊ) β§ (π€β0) = π) β (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) |
8 | | clwwlknon1.v |
. . . . . . . . . . . 12
β’ π = (VtxβπΊ) |
9 | 8 | eqcomi 2741 |
. . . . . . . . . . 11
β’
(VtxβπΊ) =
π |
10 | 9 | wrdeqi 14483 |
. . . . . . . . . 10
β’ Word
(VtxβπΊ) = Word π |
11 | 10 | eleq2i 2825 |
. . . . . . . . 9
β’ (π€ β Word (VtxβπΊ) β π€ β Word π) |
12 | 11 | biimpi 215 |
. . . . . . . 8
β’ (π€ β Word (VtxβπΊ) β π€ β Word π) |
13 | 12 | 3ad2ant2 1134 |
. . . . . . 7
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β π€ β Word π) |
14 | 13 | ad2antrl 726 |
. . . . . 6
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β π€ β Word π) |
15 | 13 | adantr 481 |
. . . . . . . . 9
β’
((((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β§ (π€β0) = π) β π€ β Word π) |
16 | | simpl1 1191 |
. . . . . . . . 9
β’
((((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β§ (π€β0) = π) β (β―βπ€) = 1) |
17 | | simpr 485 |
. . . . . . . . 9
β’
((((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β§ (π€β0) = π) β (π€β0) = π) |
18 | 15, 16, 17 | 3jca 1128 |
. . . . . . . 8
β’
((((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β§ (π€β0) = π) β (π€ β Word π β§ (β―βπ€) = 1 β§ (π€β0) = π)) |
19 | 18 | adantl 482 |
. . . . . . 7
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β (π€ β Word π β§ (β―βπ€) = 1 β§ (π€β0) = π)) |
20 | | wrdl1s1 14560 |
. . . . . . . 8
β’ (π β π β (π€ = β¨βπββ© β (π€ β Word π β§ (β―βπ€) = 1 β§ (π€β0) = π))) |
21 | 20 | adantr 481 |
. . . . . . 7
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β (π€ = β¨βπββ© β (π€ β Word π β§ (β―βπ€) = 1 β§ (π€β0) = π))) |
22 | 19, 21 | mpbird 256 |
. . . . . 6
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β π€ = β¨βπββ©) |
23 | | sneq 4637 |
. . . . . . . . . . . . 13
β’ ((π€β0) = π β {(π€β0)} = {π}) |
24 | | clwwlknon1.e |
. . . . . . . . . . . . . . 15
β’ πΈ = (EdgβπΊ) |
25 | 24 | eqcomi 2741 |
. . . . . . . . . . . . . 14
β’
(EdgβπΊ) =
πΈ |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π€β0) = π β (EdgβπΊ) = πΈ) |
27 | 23, 26 | eleq12d 2827 |
. . . . . . . . . . . 12
β’ ((π€β0) = π β ({(π€β0)} β (EdgβπΊ) β {π} β πΈ)) |
28 | 27 | biimpd 228 |
. . . . . . . . . . 11
β’ ((π€β0) = π β ({(π€β0)} β (EdgβπΊ) β {π} β πΈ)) |
29 | 28 | a1i 11 |
. . . . . . . . . 10
β’ (π β π β ((π€β0) = π β ({(π€β0)} β (EdgβπΊ) β {π} β πΈ))) |
30 | 29 | com13 88 |
. . . . . . . . 9
β’ ({(π€β0)} β
(EdgβπΊ) β
((π€β0) = π β (π β π β {π} β πΈ))) |
31 | 30 | 3ad2ant3 1135 |
. . . . . . . 8
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β
((π€β0) = π β (π β π β {π} β πΈ))) |
32 | 31 | imp 407 |
. . . . . . 7
β’
((((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0)} β
(EdgβπΊ)) β§ (π€β0) = π) β (π β π β {π} β πΈ)) |
33 | 32 | impcom 408 |
. . . . . 6
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β {π} β πΈ) |
34 | 14, 22, 33 | jca32 516 |
. . . . 5
β’ ((π β π β§ (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) β (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) |
35 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π€ = β¨βπββ© β
(β―βπ€) =
(β―ββ¨βπββ©)) |
36 | | s1len 14552 |
. . . . . . . . . 10
β’
(β―ββ¨βπββ©) = 1 |
37 | 35, 36 | eqtrdi 2788 |
. . . . . . . . 9
β’ (π€ = β¨βπββ© β
(β―βπ€) =
1) |
38 | 37 | ad2antrl 726 |
. . . . . . . 8
β’ ((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β (β―βπ€) = 1) |
39 | 38 | adantl 482 |
. . . . . . 7
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β (β―βπ€) = 1) |
40 | 8 | wrdeqi 14483 |
. . . . . . . . . 10
β’ Word
π = Word (VtxβπΊ) |
41 | 40 | eleq2i 2825 |
. . . . . . . . 9
β’ (π€ β Word π β π€ β Word (VtxβπΊ)) |
42 | 41 | biimpi 215 |
. . . . . . . 8
β’ (π€ β Word π β π€ β Word (VtxβπΊ)) |
43 | 42 | ad2antrl 726 |
. . . . . . 7
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β π€ β Word (VtxβπΊ)) |
44 | | fveq1 6887 |
. . . . . . . . . . . . . . 15
β’ (π€ = β¨βπββ© β (π€β0) = (β¨βπββ©β0)) |
45 | | s1fv 14556 |
. . . . . . . . . . . . . . 15
β’ (π β π β (β¨βπββ©β0) = π) |
46 | 44, 45 | sylan9eq 2792 |
. . . . . . . . . . . . . 14
β’ ((π€ = β¨βπββ© β§ π β π) β (π€β0) = π) |
47 | 46 | eqcomd 2738 |
. . . . . . . . . . . . 13
β’ ((π€ = β¨βπββ© β§ π β π) β π = (π€β0)) |
48 | 47 | sneqd 4639 |
. . . . . . . . . . . 12
β’ ((π€ = β¨βπββ© β§ π β π) β {π} = {(π€β0)}) |
49 | 24 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π€ = β¨βπββ© β§ π β π) β πΈ = (EdgβπΊ)) |
50 | 48, 49 | eleq12d 2827 |
. . . . . . . . . . 11
β’ ((π€ = β¨βπββ© β§ π β π) β ({π} β πΈ β {(π€β0)} β (EdgβπΊ))) |
51 | 50 | biimpd 228 |
. . . . . . . . . 10
β’ ((π€ = β¨βπββ© β§ π β π) β ({π} β πΈ β {(π€β0)} β (EdgβπΊ))) |
52 | 51 | impancom 452 |
. . . . . . . . 9
β’ ((π€ = β¨βπββ© β§ {π} β πΈ) β (π β π β {(π€β0)} β (EdgβπΊ))) |
53 | 52 | adantl 482 |
. . . . . . . 8
β’ ((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β (π β π β {(π€β0)} β (EdgβπΊ))) |
54 | 53 | impcom 408 |
. . . . . . 7
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β {(π€β0)} β (EdgβπΊ)) |
55 | 39, 43, 54 | 3jca 1128 |
. . . . . 6
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β ((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ))) |
56 | 46 | ex 413 |
. . . . . . . 8
β’ (π€ = β¨βπββ© β (π β π β (π€β0) = π)) |
57 | 56 | ad2antrl 726 |
. . . . . . 7
β’ ((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β (π β π β (π€β0) = π)) |
58 | 57 | impcom 408 |
. . . . . 6
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β (π€β0) = π) |
59 | 55, 58 | jca 512 |
. . . . 5
β’ ((π β π β§ (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) β (((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π)) |
60 | 34, 59 | impbida 799 |
. . . 4
β’ (π β π β ((((β―βπ€) = 1 β§ π€ β Word (VtxβπΊ) β§ {(π€β0)} β (EdgβπΊ)) β§ (π€β0) = π) β (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)))) |
61 | 7, 60 | bitrid 282 |
. . 3
β’ (π β π β ((π€ β (1 ClWWalksN πΊ) β§ (π€β0) = π) β (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)))) |
62 | 61 | rabbidva2 3434 |
. 2
β’ (π β π β {π€ β (1 ClWWalksN πΊ) β£ (π€β0) = π} = {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)}) |
63 | 3, 5, 62 | 3eqtrd 2776 |
1
β’ (π β π β (ππΆ1) = {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)}) |