MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1 Structured version   Visualization version   GIF version

Theorem clwwlknon1 28593
Description: The set of closed walks on vertex 𝑋 of length 1 in a graph 𝐺 as words over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐸(𝑤)

Proof of Theorem clwwlknon1
StepHypRef Expression
1 clwwlknon1.c . . . 4 𝐶 = (ClWWalksNOn‘𝐺)
21oveqi 7329 . . 3 (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1)
32a1i 11 . 2 (𝑋𝑉 → (𝑋𝐶1) = (𝑋(ClWWalksNOn‘𝐺)1))
4 clwwlknon 28586 . . 3 (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
54a1i 11 . 2 (𝑋𝑉 → (𝑋(ClWWalksNOn‘𝐺)1) = {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
6 clwwlkn1 28537 . . . . 5 (𝑤 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
76anbi1i 624 . . . 4 ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
8 clwwlknon1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqcomi 2745 . . . . . . . . . . 11 (Vtx‘𝐺) = 𝑉
109wrdeqi 14318 . . . . . . . . . 10 Word (Vtx‘𝐺) = Word 𝑉
1110eleq2i 2828 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉)
1211biimpi 215 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → 𝑤 ∈ Word 𝑉)
13123ad2ant2 1133 . . . . . . 7 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word 𝑉)
1413ad2antrl 725 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 ∈ Word 𝑉)
1513adantr 481 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → 𝑤 ∈ Word 𝑉)
16 simpl1 1190 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (♯‘𝑤) = 1)
17 simpr 485 . . . . . . . . 9 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
1815, 16, 173jca 1127 . . . . . . . 8 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
1918adantl 482 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋))
20 wrdl1s1 14396 . . . . . . . 8 (𝑋𝑉 → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2120adantr 481 . . . . . . 7 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 = ⟨“𝑋”⟩ ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 1 ∧ (𝑤‘0) = 𝑋)))
2219, 21mpbird 256 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → 𝑤 = ⟨“𝑋”⟩)
23 sneq 4580 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → {(𝑤‘0)} = {𝑋})
24 clwwlknon1.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
2524eqcomi 2745 . . . . . . . . . . . . . 14 (Edg‘𝐺) = 𝐸
2625a1i 11 . . . . . . . . . . . . 13 ((𝑤‘0) = 𝑋 → (Edg‘𝐺) = 𝐸)
2723, 26eleq12d 2831 . . . . . . . . . . . 12 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) ↔ {𝑋} ∈ 𝐸))
2827biimpd 228 . . . . . . . . . . 11 ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸))
2928a1i 11 . . . . . . . . . 10 (𝑋𝑉 → ((𝑤‘0) = 𝑋 → ({(𝑤‘0)} ∈ (Edg‘𝐺) → {𝑋} ∈ 𝐸)))
3029com13 88 . . . . . . . . 9 ({(𝑤‘0)} ∈ (Edg‘𝐺) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
31303ad2ant3 1134 . . . . . . . 8 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) → ((𝑤‘0) = 𝑋 → (𝑋𝑉 → {𝑋} ∈ 𝐸)))
3231imp 407 . . . . . . 7 ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) → (𝑋𝑉 → {𝑋} ∈ 𝐸))
3332impcom 408 . . . . . 6 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → {𝑋} ∈ 𝐸)
3414, 22, 33jca32 516 . . . . 5 ((𝑋𝑉 ∧ (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)))
35 fveq2 6811 . . . . . . . . . 10 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = (♯‘⟨“𝑋”⟩))
36 s1len 14388 . . . . . . . . . 10 (♯‘⟨“𝑋”⟩) = 1
3735, 36eqtrdi 2792 . . . . . . . . 9 (𝑤 = ⟨“𝑋”⟩ → (♯‘𝑤) = 1)
3837ad2antrl 725 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (♯‘𝑤) = 1)
3938adantl 482 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (♯‘𝑤) = 1)
408wrdeqi 14318 . . . . . . . . . 10 Word 𝑉 = Word (Vtx‘𝐺)
4140eleq2i 2828 . . . . . . . . 9 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4241biimpi 215 . . . . . . . 8 (𝑤 ∈ Word 𝑉𝑤 ∈ Word (Vtx‘𝐺))
4342ad2antrl 725 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → 𝑤 ∈ Word (Vtx‘𝐺))
44 fveq1 6810 . . . . . . . . . . . . . . 15 (𝑤 = ⟨“𝑋”⟩ → (𝑤‘0) = (⟨“𝑋”⟩‘0))
45 s1fv 14392 . . . . . . . . . . . . . . 15 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
4644, 45sylan9eq 2796 . . . . . . . . . . . . . 14 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → (𝑤‘0) = 𝑋)
4746eqcomd 2742 . . . . . . . . . . . . 13 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝑋 = (𝑤‘0))
4847sneqd 4582 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → {𝑋} = {(𝑤‘0)})
4924a1i 11 . . . . . . . . . . . 12 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → 𝐸 = (Edg‘𝐺))
5048, 49eleq12d 2831 . . . . . . . . . . 11 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 ↔ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5150biimpd 228 . . . . . . . . . 10 ((𝑤 = ⟨“𝑋”⟩ ∧ 𝑋𝑉) → ({𝑋} ∈ 𝐸 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5251impancom 452 . . . . . . . . 9 ((𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5352adantl 482 . . . . . . . 8 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → {(𝑤‘0)} ∈ (Edg‘𝐺)))
5453impcom 408 . . . . . . 7 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → {(𝑤‘0)} ∈ (Edg‘𝐺))
5539, 43, 543jca 1127 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → ((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)))
5646ex 413 . . . . . . . 8 (𝑤 = ⟨“𝑋”⟩ → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5756ad2antrl 725 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → (𝑋𝑉 → (𝑤‘0) = 𝑋))
5857impcom 408 . . . . . 6 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (𝑤‘0) = 𝑋)
5955, 58jca 512 . . . . 5 ((𝑋𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))) → (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
6034, 59impbida 798 . . . 4 (𝑋𝑉 → ((((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
617, 60bitrid 282 . . 3 (𝑋𝑉 → ((𝑤 ∈ (1 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
6261rabbidva2 3405 . 2 (𝑋𝑉 → {𝑤 ∈ (1 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
633, 5, 623eqtrd 2780 1 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  {crab 3403  {csn 4570  cfv 6465  (class class class)co 7316  0cc0 10950  1c1 10951  chash 14123  Word cword 14295  ⟨“cs1 14377  Vtxcvtx 27499  Edgcedg 27550   ClWWalksN cclwwlkn 28520  ClWWalksNOncclwwlknon 28583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-n0 12313  df-xnn0 12385  df-z 12399  df-uz 12662  df-fz 13319  df-fzo 13462  df-hash 14124  df-word 14296  df-lsw 14344  df-s1 14378  df-clwwlk 28478  df-clwwlkn 28521  df-clwwlknon 28584
This theorem is referenced by:  clwwlknon1loop  28594  clwwlknon1nloop  28595
  Copyright terms: Public domain W3C validator