Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgrlem Structured version   Visualization version   GIF version

Theorem umgrislfupgrlem 26474
 Description: Lemma for umgrislfupgr 26475 and usgrislfuspgr 26537. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrlem ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}

Proof of Theorem umgrislfupgrlem
StepHypRef Expression
1 2pos 11489 . . . 4 0 < 2
2 simprl 761 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ 𝒫 𝑉)
3 fveq2 6448 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4 hash0 13477 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
53, 4syl6eq 2830 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = 0)
65breq2d 4900 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
7 2re 11453 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8 0re 10380 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
97, 8lenlti 10498 . . . . . . . . . . . . . . 15 (2 ≤ 0 ↔ ¬ 0 < 2)
10 pm2.21 121 . . . . . . . . . . . . . . 15 (¬ 0 < 2 → (0 < 2 → 𝑥 ≠ ∅))
119, 10sylbi 209 . . . . . . . . . . . . . 14 (2 ≤ 0 → (0 < 2 → 𝑥 ≠ ∅))
126, 11syl6bi 245 . . . . . . . . . . . . 13 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) → (0 < 2 → 𝑥 ≠ ∅)))
1312adantld 486 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (0 < 2 → 𝑥 ≠ ∅)))
1413com23 86 . . . . . . . . . . 11 (𝑥 = ∅ → (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → 𝑥 ≠ ∅)))
1514impd 400 . . . . . . . . . 10 (𝑥 = ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
16 ax-1 6 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
1715, 16pm2.61ine 3053 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅)
18 eldifsn 4550 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅))
192, 17, 18sylanbrc 578 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ (𝒫 𝑉 ∖ {∅}))
20 simprr 763 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 2 ≤ (♯‘𝑥))
2119, 20jca 507 . . . . . . 7 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)))
2221ex 403 . . . . . 6 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
23 eldifi 3955 . . . . . . 7 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑥 ∈ 𝒫 𝑉)
2423anim1i 608 . . . . . 6 ((𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)))
2522, 24impbid1 217 . . . . 5 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) ↔ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
2625rabbidva2 3383 . . . 4 (0 < 2 → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
271, 26ax-mp 5 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}
2827ineq2i 4034 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
29 inrab 4125 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))}
30 vex 3401 . . . . . . 7 𝑥 ∈ V
31 hashxnn0 13448 . . . . . . 7 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
3230, 31ax-mp 5 . . . . . 6 (♯‘𝑥) ∈ ℕ0*
33 xnn0xr 11723 . . . . . 6 ((♯‘𝑥) ∈ ℕ0* → (♯‘𝑥) ∈ ℝ*)
3432, 33ax-mp 5 . . . . 5 (♯‘𝑥) ∈ ℝ*
357rexri 10437 . . . . 5 2 ∈ ℝ*
36 xrletri3 12301 . . . . 5 (((♯‘𝑥) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))))
3734, 35, 36mp2an 682 . . . 4 ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)))
3837bicomi 216 . . 3 (((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)) ↔ (♯‘𝑥) = 2)
3938rabbii 3382 . 2 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
4028, 29, 393eqtri 2806 1 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  {crab 3094  Vcvv 3398   ∖ cdif 3789   ∩ cin 3791  ∅c0 4141  𝒫 cpw 4379  {csn 4398   class class class wbr 4888  ‘cfv 6137  0cc0 10274  ℝ*cxr 10412   < clt 10413   ≤ cle 10414  2c2 11434  ℕ0*cxnn0 11718  ♯chash 13439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-n0 11647  df-xnn0 11719  df-z 11733  df-uz 11997  df-fz 12648  df-hash 13440 This theorem is referenced by:  umgrislfupgr  26475  usgrislfuspgr  26537
 Copyright terms: Public domain W3C validator