MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgrlem Structured version   Visualization version   GIF version

Theorem umgrislfupgrlem 26918
Description: Lemma for umgrislfupgr 26919 and usgrislfuspgr 26980. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrlem ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}

Proof of Theorem umgrislfupgrlem
StepHypRef Expression
1 2pos 11732 . . . 4 0 < 2
2 simprl 770 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ 𝒫 𝑉)
3 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4 hash0 13728 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
53, 4eqtrdi 2852 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (♯‘𝑥) = 0)
65breq2d 5045 . . . . . . . . . . . . 13 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
7 2re 11703 . . . . . . . . . . . . . . 15 2 ∈ ℝ
8 0re 10636 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97, 8lenlti 10753 . . . . . . . . . . . . . 14 (2 ≤ 0 ↔ ¬ 0 < 2)
10 pm2.21 123 . . . . . . . . . . . . . 14 (¬ 0 < 2 → (0 < 2 → 𝑥 ≠ ∅))
119, 10sylbi 220 . . . . . . . . . . . . 13 (2 ≤ 0 → (0 < 2 → 𝑥 ≠ ∅))
126, 11syl6bi 256 . . . . . . . . . . . 12 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) → (0 < 2 → 𝑥 ≠ ∅)))
1312adantld 494 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (0 < 2 → 𝑥 ≠ ∅)))
1413impcomd 415 . . . . . . . . . 10 (𝑥 = ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
15 ax-1 6 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
1614, 15pm2.61ine 3073 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅)
17 eldifsn 4683 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅))
182, 16, 17sylanbrc 586 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ (𝒫 𝑉 ∖ {∅}))
19 simprr 772 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 2 ≤ (♯‘𝑥))
2018, 19jca 515 . . . . . . 7 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)))
2120ex 416 . . . . . 6 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
22 eldifi 4057 . . . . . . 7 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑥 ∈ 𝒫 𝑉)
2322anim1i 617 . . . . . 6 ((𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)))
2421, 23impbid1 228 . . . . 5 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) ↔ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
2524rabbidva2 3426 . . . 4 (0 < 2 → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
261, 25ax-mp 5 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}
2726ineq2i 4139 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
28 inrab 4230 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))}
29 hashxnn0 13699 . . . . . . 7 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
3029elv 3449 . . . . . 6 (♯‘𝑥) ∈ ℕ0*
31 xnn0xr 11964 . . . . . 6 ((♯‘𝑥) ∈ ℕ0* → (♯‘𝑥) ∈ ℝ*)
3230, 31ax-mp 5 . . . . 5 (♯‘𝑥) ∈ ℝ*
337rexri 10692 . . . . 5 2 ∈ ℝ*
34 xrletri3 12539 . . . . 5 (((♯‘𝑥) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))))
3532, 33, 34mp2an 691 . . . 4 ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)))
3635bicomi 227 . . 3 (((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)) ↔ (♯‘𝑥) = 2)
3736rabbii 3423 . 2 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
3827, 28, 373eqtri 2828 1 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  {crab 3113  Vcvv 3444  cdif 3881  cin 3883  c0 4246  𝒫 cpw 4500  {csn 4528   class class class wbr 5033  cfv 6328  0cc0 10530  *cxr 10667   < clt 10668  cle 10669  2c2 11684  0*cxnn0 11959  chash 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691
This theorem is referenced by:  umgrislfupgr  26919  usgrislfuspgr  26980
  Copyright terms: Public domain W3C validator