MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgrlem Structured version   Visualization version   GIF version

Theorem umgrislfupgrlem 29157
Description: Lemma for umgrislfupgr 29158 and usgrislfuspgr 29222. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrlem ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}

Proof of Theorem umgrislfupgrlem
StepHypRef Expression
1 2pos 12396 . . . 4 0 < 2
2 simprl 770 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ 𝒫 𝑉)
3 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4 hash0 14416 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
53, 4eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (♯‘𝑥) = 0)
65breq2d 5178 . . . . . . . . . . . . 13 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
7 2re 12367 . . . . . . . . . . . . . . 15 2 ∈ ℝ
8 0re 11292 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97, 8lenlti 11410 . . . . . . . . . . . . . 14 (2 ≤ 0 ↔ ¬ 0 < 2)
10 pm2.21 123 . . . . . . . . . . . . . 14 (¬ 0 < 2 → (0 < 2 → 𝑥 ≠ ∅))
119, 10sylbi 217 . . . . . . . . . . . . 13 (2 ≤ 0 → (0 < 2 → 𝑥 ≠ ∅))
126, 11biimtrdi 253 . . . . . . . . . . . 12 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) → (0 < 2 → 𝑥 ≠ ∅)))
1312adantld 490 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (0 < 2 → 𝑥 ≠ ∅)))
1413impcomd 411 . . . . . . . . . 10 (𝑥 = ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
15 ax-1 6 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
1614, 15pm2.61ine 3031 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅)
17 eldifsn 4811 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅))
182, 16, 17sylanbrc 582 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ (𝒫 𝑉 ∖ {∅}))
19 simprr 772 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 2 ≤ (♯‘𝑥))
2018, 19jca 511 . . . . . . 7 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)))
2120ex 412 . . . . . 6 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
22 eldifi 4154 . . . . . . 7 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑥 ∈ 𝒫 𝑉)
2322anim1i 614 . . . . . 6 ((𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)))
2421, 23impbid1 225 . . . . 5 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) ↔ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
2524rabbidva2 3445 . . . 4 (0 < 2 → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
261, 25ax-mp 5 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}
2726ineq2i 4238 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
28 inrab 4335 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))}
29 hashxnn0 14388 . . . . . . 7 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
3029elv 3493 . . . . . 6 (♯‘𝑥) ∈ ℕ0*
31 xnn0xr 12630 . . . . . 6 ((♯‘𝑥) ∈ ℕ0* → (♯‘𝑥) ∈ ℝ*)
3230, 31ax-mp 5 . . . . 5 (♯‘𝑥) ∈ ℝ*
337rexri 11348 . . . . 5 2 ∈ ℝ*
34 xrletri3 13216 . . . . 5 (((♯‘𝑥) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))))
3532, 33, 34mp2an 691 . . . 4 ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)))
3635bicomi 224 . . 3 (((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)) ↔ (♯‘𝑥) = 2)
3736rabbii 3449 . 2 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
3827, 28, 373eqtri 2772 1 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cfv 6573  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  2c2 12348  0*cxnn0 12625  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  umgrislfupgr  29158  usgrislfuspgr  29222
  Copyright terms: Public domain W3C validator