Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcgteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
Ref | Expression |
---|---|
orvcgteel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orvcgteel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvcgteel.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvcgteel | ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcgteel.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | orvcgteel.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvcgteel.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
5 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | brcnvg 5788 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) | |
7 | 4, 5, 6 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) |
8 | 7 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥))) |
9 | rexr 11021 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
10 | 9 | ad2antrl 725 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
11 | simprr 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝐴 ≤ 𝑥) | |
12 | ltpnf 12856 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
13 | 12 | ad2antrl 725 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 < +∞) |
14 | 11, 13 | jca 512 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) |
15 | 10, 14 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) |
16 | simprl 768 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ*) | |
17 | 3 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ∈ ℝ) |
18 | simprrl 778 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ≤ 𝑥) | |
19 | simprrr 779 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 < +∞) | |
20 | xrre3 12905 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) → 𝑥 ∈ ℝ) | |
21 | 16, 17, 18, 19, 20 | syl22anc 836 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ) |
22 | 21, 18 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) |
23 | 15, 22 | impbida 798 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
24 | 8, 23 | bitrd 278 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
25 | 24 | rabbidva2 3411 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
26 | 3 | rexrd 11025 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
27 | pnfxr 11029 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
28 | icoval 13117 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) | |
29 | 26, 27, 28 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
30 | 25, 29 | eqtr4d 2781 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = (𝐴[,)+∞)) |
31 | icopnfcld 23931 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
32 | 3, 31 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
33 | 30, 32 | eqeltrd 2839 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
34 | 1, 2, 3, 33 | orrvccel 32433 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 (,)cioo 13079 [,)cico 13081 topGenctg 17148 Clsdccld 22167 Probcprb 32374 rRndVarcrrv 32407 ∘RV/𝑐corvc 32422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-ioo 13083 df-ico 13085 df-topgen 17154 df-top 22043 df-bases 22096 df-cld 22170 df-esum 31996 df-siga 32077 df-sigagen 32107 df-brsiga 32150 df-meas 32164 df-mbfm 32218 df-prob 32375 df-rrv 32408 df-orvc 32423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |