| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcgteel | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| Ref | Expression |
|---|---|
| orvcgteel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orvcgteel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvcgteel.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| orvcgteel | ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcgteel.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | orvcgteel.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | orvcgteel.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 5 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 6 | brcnvg 5843 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) |
| 8 | 7 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥))) |
| 9 | rexr 11220 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
| 10 | 9 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
| 11 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝐴 ≤ 𝑥) | |
| 12 | ltpnf 13080 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 13 | 12 | ad2antrl 728 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 < +∞) |
| 14 | 11, 13 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) |
| 15 | 10, 14 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) |
| 16 | simprl 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ*) | |
| 17 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ∈ ℝ) |
| 18 | simprrl 780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ≤ 𝑥) | |
| 19 | simprrr 781 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 < +∞) | |
| 20 | xrre3 13131 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) → 𝑥 ∈ ℝ) | |
| 21 | 16, 17, 18, 19, 20 | syl22anc 838 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ) |
| 22 | 21, 18 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) |
| 23 | 15, 22 | impbida 800 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
| 24 | 8, 23 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
| 25 | 24 | rabbidva2 3407 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
| 26 | 3 | rexrd 11224 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 27 | pnfxr 11228 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 28 | icoval 13344 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) | |
| 29 | 26, 27, 28 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
| 30 | 25, 29 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = (𝐴[,)+∞)) |
| 31 | icopnfcld 24655 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 32 | 3, 31 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| 33 | 30, 32 | eqeltrd 2828 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
| 34 | 1, 2, 3, 33 | orrvccel 34458 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,)cioo 13306 [,)cico 13308 topGenctg 17400 Clsdccld 22903 Probcprb 34398 rRndVarcrrv 34431 ∘RV/𝑐corvc 34447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ioo 13310 df-ico 13312 df-topgen 17406 df-top 22781 df-bases 22833 df-cld 22906 df-esum 34018 df-siga 34099 df-sigagen 34129 df-brsiga 34172 df-meas 34186 df-mbfm 34240 df-prob 34399 df-rrv 34432 df-orvc 34448 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |