| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcgteel | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| Ref | Expression |
|---|---|
| orvcgteel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orvcgteel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvcgteel.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| orvcgteel | ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvcgteel.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | orvcgteel.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | orvcgteel.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 5 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 6 | brcnvg 5826 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) |
| 8 | 7 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥))) |
| 9 | rexr 11180 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
| 10 | 9 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
| 11 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝐴 ≤ 𝑥) | |
| 12 | ltpnf 13040 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 13 | 12 | ad2antrl 728 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 < +∞) |
| 14 | 11, 13 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) |
| 15 | 10, 14 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) |
| 16 | simprl 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ*) | |
| 17 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ∈ ℝ) |
| 18 | simprrl 780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ≤ 𝑥) | |
| 19 | simprrr 781 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 < +∞) | |
| 20 | xrre3 13091 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) → 𝑥 ∈ ℝ) | |
| 21 | 16, 17, 18, 19, 20 | syl22anc 838 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ) |
| 22 | 21, 18 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) |
| 23 | 15, 22 | impbida 800 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
| 24 | 8, 23 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
| 25 | 24 | rabbidva2 3398 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
| 26 | 3 | rexrd 11184 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 27 | pnfxr 11188 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 28 | icoval 13304 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) | |
| 29 | 26, 27, 28 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
| 30 | 25, 29 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = (𝐴[,)+∞)) |
| 31 | icopnfcld 24671 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 32 | 3, 31 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
| 33 | 30, 32 | eqeltrd 2828 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
| 34 | 1, 2, 3, 33 | orrvccel 34437 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 (,)cioo 13266 [,)cico 13268 topGenctg 17359 Clsdccld 22919 Probcprb 34377 rRndVarcrrv 34410 ∘RV/𝑐corvc 34426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-ioo 13270 df-ico 13272 df-topgen 17365 df-top 22797 df-bases 22849 df-cld 22922 df-esum 33997 df-siga 34078 df-sigagen 34108 df-brsiga 34151 df-meas 34165 df-mbfm 34219 df-prob 34378 df-rrv 34411 df-orvc 34427 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |