![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcgteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
Ref | Expression |
---|---|
orvcgteel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orvcgteel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvcgteel.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvcgteel | ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcgteel.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | orvcgteel.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvcgteel.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
5 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | brcnvg 5904 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) | |
7 | 4, 5, 6 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥◡ ≤ 𝐴 ↔ 𝐴 ≤ 𝑥)) |
8 | 7 | pm5.32da 578 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥))) |
9 | rexr 11336 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
10 | 9 | ad2antrl 727 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
11 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝐴 ≤ 𝑥) | |
12 | ltpnf 13183 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
13 | 12 | ad2antrl 727 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → 𝑥 < +∞) |
14 | 11, 13 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) |
15 | 10, 14 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) |
16 | simprl 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ*) | |
17 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ∈ ℝ) |
18 | simprrl 780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝐴 ≤ 𝑥) | |
19 | simprrr 781 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 < +∞) | |
20 | xrre3 13233 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)) → 𝑥 ∈ ℝ) | |
21 | 16, 17, 18, 19, 20 | syl22anc 838 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → 𝑥 ∈ ℝ) |
22 | 21, 18 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥)) |
23 | 15, 22 | impbida 800 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
24 | 8, 23 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥◡ ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)))) |
25 | 24 | rabbidva2 3445 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
26 | 3 | rexrd 11340 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
27 | pnfxr 11344 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
28 | icoval 13445 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) | |
29 | 26, 27, 28 | sylancl 585 | . . . 4 ⊢ (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < +∞)}) |
30 | 25, 29 | eqtr4d 2783 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} = (𝐴[,)+∞)) |
31 | icopnfcld 24809 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
32 | 3, 31 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
33 | 30, 32 | eqeltrd 2844 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥◡ ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
34 | 1, 2, 3, 33 | orrvccel 34431 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 (,)cioo 13407 [,)cico 13409 topGenctg 17497 Clsdccld 23045 Probcprb 34372 rRndVarcrrv 34405 ∘RV/𝑐corvc 34420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-ico 13413 df-topgen 17503 df-top 22921 df-bases 22974 df-cld 23048 df-esum 33992 df-siga 34073 df-sigagen 34103 df-brsiga 34146 df-meas 34160 df-mbfm 34214 df-prob 34373 df-rrv 34406 df-orvc 34421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |