Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcgteel Structured version   Visualization version   GIF version

Theorem orvcgteel 31403
Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.)
Hypotheses
Ref Expression
orvcgteel.1 (𝜑𝑃 ∈ Prob)
orvcgteel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcgteel.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvcgteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvcgteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orvcgteel.1 . 2 (𝜑𝑃 ∈ Prob)
2 orvcgteel.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcgteel.3 . 2 (𝜑𝐴 ∈ ℝ)
4 simpr 477 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
53adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
6 brcnvg 5604 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴𝐴𝑥))
74, 5, 6syl2anc 576 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥𝐴𝐴𝑥))
87pm5.32da 571 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
9 rexr 10492 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad2antrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝑥 ∈ ℝ*)
11 simprr 761 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝐴𝑥)
12 ltpnf 12338 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
1312ad2antrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝑥 < +∞)
1411, 13jca 504 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → (𝐴𝑥𝑥 < +∞))
1510, 14jca 504 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞)))
16 simprl 759 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 ∈ ℝ*)
173adantr 473 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝐴 ∈ ℝ)
18 simprrl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝐴𝑥)
19 simprrr 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 < +∞)
20 xrre3 12387 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝑥𝑥 < +∞)) → 𝑥 ∈ ℝ)
2116, 17, 18, 19, 20syl22anc 827 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 ∈ ℝ)
2221, 18jca 504 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥))
2315, 22impbida 789 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))))
248, 23bitrd 271 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))))
2524rabbidva2 3402 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
263rexrd 10496 . . . . 5 (𝜑𝐴 ∈ ℝ*)
27 pnfxr 10500 . . . . 5 +∞ ∈ ℝ*
28 icoval 12598 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
2926, 27, 28sylancl 578 . . . 4 (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
3025, 29eqtr4d 2819 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (𝐴[,)+∞))
31 icopnfcld 23094 . . . 4 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
323, 31syl 17 . . 3 (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
3330, 32eqeltrd 2868 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
341, 2, 3, 33orrvccel 31402 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  {crab 3094   class class class wbr 4934  ccnv 5410  dom cdm 5411  ran crn 5412  cfv 6193  (class class class)co 6982  cr 10340  +∞cpnf 10477  *cxr 10479   < clt 10480  cle 10481  (,)cioo 12560  [,)cico 12562  topGenctg 16573  Clsdccld 21343  Probcprb 31343  rRndVarcrrv 31376  RV/𝑐corvc 31391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-ac2 9689  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-acn 9171  df-ac 9342  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-n0 11714  df-z 11800  df-uz 12065  df-q 12169  df-ioo 12564  df-ico 12566  df-topgen 16579  df-top 21221  df-bases 21273  df-cld 21346  df-esum 30963  df-siga 31044  df-sigagen 31075  df-brsiga 31118  df-meas 31132  df-mbfm 31186  df-prob 31344  df-rrv 31377  df-orvc 31392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator