Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcgteel Structured version   Visualization version   GIF version

Theorem orvcgteel 31953
Description: Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.)
Hypotheses
Ref Expression
orvcgteel.1 (𝜑𝑃 ∈ Prob)
orvcgteel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcgteel.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvcgteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvcgteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orvcgteel.1 . 2 (𝜑𝑃 ∈ Prob)
2 orvcgteel.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcgteel.3 . 2 (𝜑𝐴 ∈ ℝ)
4 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
53adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
6 brcnvg 5719 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴𝐴𝑥))
74, 5, 6syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑥𝐴𝐴𝑥))
87pm5.32da 582 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
9 rexr 10725 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝑥 ∈ ℝ*)
11 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝐴𝑥)
12 ltpnf 12556 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
1312ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → 𝑥 < +∞)
1411, 13jca 515 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → (𝐴𝑥𝑥 < +∞))
1510, 14jca 515 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞)))
16 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 ∈ ℝ*)
173adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝐴 ∈ ℝ)
18 simprrl 780 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝐴𝑥)
19 simprrr 781 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 < +∞)
20 xrre3 12605 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝑥𝑥 < +∞)) → 𝑥 ∈ ℝ)
2116, 17, 18, 19, 20syl22anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → 𝑥 ∈ ℝ)
2221, 18jca 515 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥))
2315, 22impbida 800 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝐴𝑥) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))))
248, 23bitrd 282 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < +∞))))
2524rabbidva2 3388 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
263rexrd 10729 . . . . 5 (𝜑𝐴 ∈ ℝ*)
27 pnfxr 10733 . . . . 5 +∞ ∈ ℝ*
28 icoval 12817 . . . . 5 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
2926, 27, 28sylancl 589 . . . 4 (𝜑 → (𝐴[,)+∞) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < +∞)})
3025, 29eqtr4d 2796 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (𝐴[,)+∞))
31 icopnfcld 23469 . . . 4 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
323, 31syl 17 . . 3 (𝜑 → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
3330, 32eqeltrd 2852 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
341, 2, 3, 33orrvccel 31952 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3074   class class class wbr 5032  ccnv 5523  dom cdm 5524  ran crn 5525  cfv 6335  (class class class)co 7150  cr 10574  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  (,)cioo 12779  [,)cico 12781  topGenctg 16769  Clsdccld 21716  Probcprb 31893  rRndVarcrrv 31926  RV/𝑐corvc 31941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-ac2 9923  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-acn 9404  df-ac 9576  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-ioo 12783  df-ico 12785  df-topgen 16775  df-top 21594  df-bases 21646  df-cld 21719  df-esum 31515  df-siga 31596  df-sigagen 31626  df-brsiga 31669  df-meas 31683  df-mbfm 31737  df-prob 31894  df-rrv 31927  df-orvc 31942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator