Step | Hyp | Ref
| Expression |
1 | | 0nn0 12487 |
. 2
β’ 0 β
β0 |
2 | | wwlksn 29091 |
. . 3
β’ (0 β
β0 β (0 WWalksN πΊ) = {π€ β (WWalksβπΊ) β£ (β―βπ€) = (0 + 1)}) |
3 | | eqid 2733 |
. . . . . . . 8
β’
(VtxβπΊ) =
(VtxβπΊ) |
4 | | eqid 2733 |
. . . . . . . 8
β’
(EdgβπΊ) =
(EdgβπΊ) |
5 | 3, 4 | iswwlks 29090 |
. . . . . . 7
β’ (π€ β (WWalksβπΊ) β (π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) |
6 | | 0p1e1 12334 |
. . . . . . . 8
β’ (0 + 1) =
1 |
7 | 6 | eqeq2i 2746 |
. . . . . . 7
β’
((β―βπ€) =
(0 + 1) β (β―βπ€) = 1) |
8 | 5, 7 | anbi12i 628 |
. . . . . 6
β’ ((π€ β (WWalksβπΊ) β§ (β―βπ€) = (0 + 1)) β ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = 1)) |
9 | | simp2 1138 |
. . . . . . . 8
β’ ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β π€ β Word (VtxβπΊ)) |
10 | | vex 3479 |
. . . . . . . . . . . 12
β’ π€ β V |
11 | | 0lt1 11736 |
. . . . . . . . . . . . 13
β’ 0 <
1 |
12 | | breq2 5153 |
. . . . . . . . . . . . 13
β’
((β―βπ€) =
1 β (0 < (β―βπ€) β 0 < 1)) |
13 | 11, 12 | mpbiri 258 |
. . . . . . . . . . . 12
β’
((β―βπ€) =
1 β 0 < (β―βπ€)) |
14 | | hashgt0n0 14325 |
. . . . . . . . . . . 12
β’ ((π€ β V β§ 0 <
(β―βπ€)) β
π€ β
β
) |
15 | 10, 13, 14 | sylancr 588 |
. . . . . . . . . . 11
β’
((β―βπ€) =
1 β π€ β
β
) |
16 | 15 | adantr 482 |
. . . . . . . . . 10
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ)) β π€ β β
) |
17 | | simpr 486 |
. . . . . . . . . 10
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ)) β π€ β Word (VtxβπΊ)) |
18 | | ral0 4513 |
. . . . . . . . . . . 12
β’
βπ β
β
{(π€βπ), (π€β(π + 1))} β (EdgβπΊ) |
19 | | oveq1 7416 |
. . . . . . . . . . . . . . . 16
β’
((β―βπ€) =
1 β ((β―βπ€)
β 1) = (1 β 1)) |
20 | | 1m1e0 12284 |
. . . . . . . . . . . . . . . 16
β’ (1
β 1) = 0 |
21 | 19, 20 | eqtrdi 2789 |
. . . . . . . . . . . . . . 15
β’
((β―βπ€) =
1 β ((β―βπ€)
β 1) = 0) |
22 | 21 | oveq2d 7425 |
. . . . . . . . . . . . . 14
β’
((β―βπ€) =
1 β (0..^((β―βπ€) β 1)) = (0..^0)) |
23 | | fzo0 13656 |
. . . . . . . . . . . . . 14
β’ (0..^0) =
β
|
24 | 22, 23 | eqtrdi 2789 |
. . . . . . . . . . . . 13
β’
((β―βπ€) =
1 β (0..^((β―βπ€) β 1)) = β
) |
25 | 24 | raleqdv 3326 |
. . . . . . . . . . . 12
β’
((β―βπ€) =
1 β (βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ) β βπ β β
{(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) |
26 | 18, 25 | mpbiri 258 |
. . . . . . . . . . 11
β’
((β―βπ€) =
1 β βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) |
27 | 26 | adantr 482 |
. . . . . . . . . 10
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ)) β
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) |
28 | 16, 17, 27 | 3jca 1129 |
. . . . . . . . 9
β’
(((β―βπ€)
= 1 β§ π€ β Word
(VtxβπΊ)) β
(π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) |
29 | 28 | ex 414 |
. . . . . . . 8
β’
((β―βπ€) =
1 β (π€ β Word
(VtxβπΊ) β (π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)))) |
30 | 9, 29 | impbid2 225 |
. . . . . . 7
β’
((β―βπ€) =
1 β ((π€ β β
β§ π€ β Word
(VtxβπΊ) β§
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β π€ β Word (VtxβπΊ))) |
31 | 30 | pm5.32ri 577 |
. . . . . 6
β’ (((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = 1) β (π€ β Word (VtxβπΊ) β§ (β―βπ€) = 1)) |
32 | 8, 31 | bitri 275 |
. . . . 5
β’ ((π€ β (WWalksβπΊ) β§ (β―βπ€) = (0 + 1)) β (π€ β Word (VtxβπΊ) β§ (β―βπ€) = 1)) |
33 | 32 | a1i 11 |
. . . 4
β’ (0 β
β0 β ((π€ β (WWalksβπΊ) β§ (β―βπ€) = (0 + 1)) β (π€ β Word (VtxβπΊ) β§ (β―βπ€) = 1))) |
34 | 33 | rabbidva2 3435 |
. . 3
β’ (0 β
β0 β {π€ β (WWalksβπΊ) β£ (β―βπ€) = (0 + 1)} = {π€ β Word (VtxβπΊ) β£ (β―βπ€) = 1}) |
35 | 2, 34 | eqtrd 2773 |
. 2
β’ (0 β
β0 β (0 WWalksN πΊ) = {π€ β Word (VtxβπΊ) β£ (β―βπ€) = 1}) |
36 | 1, 35 | ax-mp 5 |
1
β’ (0
WWalksN πΊ) = {π€ β Word (VtxβπΊ) β£ (β―βπ€) = 1} |