MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn0s Structured version   Visualization version   GIF version

Theorem wwlksn0s 29894
Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wwlksn0s (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Distinct variable group:   𝑤,𝐺

Proof of Theorem wwlksn0s
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12568 . 2 0 ∈ ℕ0
2 wwlksn 29870 . . 3 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)})
3 eqid 2740 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2740 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
53, 4iswwlks 29869 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6 0p1e1 12415 . . . . . . . 8 (0 + 1) = 1
76eqeq2i 2753 . . . . . . 7 ((♯‘𝑤) = (0 + 1) ↔ (♯‘𝑤) = 1)
85, 7anbi12i 627 . . . . . 6 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1))
9 simp2 1137 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
10 vex 3492 . . . . . . . . . . . 12 𝑤 ∈ V
11 0lt1 11812 . . . . . . . . . . . . 13 0 < 1
12 breq2 5170 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0 < (♯‘𝑤) ↔ 0 < 1))
1311, 12mpbiri 258 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → 0 < (♯‘𝑤))
14 hashgt0n0 14414 . . . . . . . . . . . 12 ((𝑤 ∈ V ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
1510, 13, 14sylancr 586 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → 𝑤 ≠ ∅)
1615adantr 480 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ≠ ∅)
17 simpr 484 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
18 ral0 4536 . . . . . . . . . . . 12 𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)
19 oveq1 7455 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = (1 − 1))
20 1m1e0 12365 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2119, 20eqtrdi 2796 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = 0)
2221oveq2d 7464 . . . . . . . . . . . . . 14 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = (0..^0))
23 fzo0 13740 . . . . . . . . . . . . . 14 (0..^0) = ∅
2422, 23eqtrdi 2796 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = ∅)
2524raleqdv 3334 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2618, 25mpbiri 258 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2726adantr 480 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2816, 17, 273jca 1128 . . . . . . . . 9 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2928ex 412 . . . . . . . 8 ((♯‘𝑤) = 1 → (𝑤 ∈ Word (Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
309, 29impbid2 226 . . . . . . 7 ((♯‘𝑤) = 1 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺)))
3130pm5.32ri 575 . . . . . 6 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
328, 31bitri 275 . . . . 5 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
3332a1i 11 . . . 4 (0 ∈ ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
3433rabbidva2 3445 . . 3 (0 ∈ ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
352, 34eqtrd 2780 . 2 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
361, 35ax-mp 5 1 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  c0 4352  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  0cn0 12553  ..^cfzo 13711  chash 14379  Word cword 14562  Vtxcvtx 29031  Edgcedg 29082  WWalkscwwlks 29858   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by:  wwlksn0  29896  rusgrnumwwlkb0  30004
  Copyright terms: Public domain W3C validator