MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn0s Structured version   Visualization version   GIF version

Theorem wwlksn0s 27642
Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wwlksn0s (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Distinct variable group:   𝑤,𝐺

Proof of Theorem wwlksn0s
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11915 . 2 0 ∈ ℕ0
2 wwlksn 27618 . . 3 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)})
3 eqid 2824 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2824 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
53, 4iswwlks 27617 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6 0p1e1 11762 . . . . . . . 8 (0 + 1) = 1
76eqeq2i 2837 . . . . . . 7 ((♯‘𝑤) = (0 + 1) ↔ (♯‘𝑤) = 1)
85, 7anbi12i 628 . . . . . 6 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1))
9 simp2 1133 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
10 vex 3500 . . . . . . . . . . . 12 𝑤 ∈ V
11 0lt1 11165 . . . . . . . . . . . . 13 0 < 1
12 breq2 5073 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0 < (♯‘𝑤) ↔ 0 < 1))
1311, 12mpbiri 260 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → 0 < (♯‘𝑤))
14 hashgt0n0 13729 . . . . . . . . . . . 12 ((𝑤 ∈ V ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
1510, 13, 14sylancr 589 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → 𝑤 ≠ ∅)
1615adantr 483 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ≠ ∅)
17 simpr 487 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
18 ral0 4459 . . . . . . . . . . . 12 𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)
19 oveq1 7166 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = (1 − 1))
20 1m1e0 11712 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2119, 20syl6eq 2875 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = 0)
2221oveq2d 7175 . . . . . . . . . . . . . 14 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = (0..^0))
23 fzo0 13064 . . . . . . . . . . . . . 14 (0..^0) = ∅
2422, 23syl6eq 2875 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = ∅)
2524raleqdv 3418 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2618, 25mpbiri 260 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2726adantr 483 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2816, 17, 273jca 1124 . . . . . . . . 9 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2928ex 415 . . . . . . . 8 ((♯‘𝑤) = 1 → (𝑤 ∈ Word (Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
309, 29impbid2 228 . . . . . . 7 ((♯‘𝑤) = 1 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺)))
3130pm5.32ri 578 . . . . . 6 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
328, 31bitri 277 . . . . 5 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
3332a1i 11 . . . 4 (0 ∈ ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
3433rabbidva2 3479 . . 3 (0 ∈ ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
352, 34eqtrd 2859 . 2 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
361, 35ax-mp 5 1 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  {crab 3145  Vcvv 3497  c0 4294  {cpr 4572   class class class wbr 5069  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cmin 10873  0cn0 11900  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26784  Edgcedg 26835  WWalkscwwlks 27606   WWalksN cwwlksn 27607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-wwlks 27611  df-wwlksn 27612
This theorem is referenced by:  wwlksn0  27644  rusgrnumwwlkb0  27753
  Copyright terms: Public domain W3C validator