MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn0s Structured version   Visualization version   GIF version

Theorem wwlksn0s 27118
Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wwlksn0s (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Distinct variable group:   𝑤,𝐺

Proof of Theorem wwlksn0s
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11597 . 2 0 ∈ ℕ0
2 wwlksn 27088 . . 3 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)})
3 eqid 2799 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2799 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
53, 4iswwlks 27087 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6 0p1e1 11442 . . . . . . . 8 (0 + 1) = 1
76eqeq2i 2811 . . . . . . 7 ((♯‘𝑤) = (0 + 1) ↔ (♯‘𝑤) = 1)
85, 7anbi12i 621 . . . . . 6 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1))
9 simp2 1168 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
10 vex 3388 . . . . . . . . . . . 12 𝑤 ∈ V
11 0lt1 10842 . . . . . . . . . . . . 13 0 < 1
12 breq2 4847 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0 < (♯‘𝑤) ↔ 0 < 1))
1311, 12mpbiri 250 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → 0 < (♯‘𝑤))
14 hashgt0n0 13406 . . . . . . . . . . . 12 ((𝑤 ∈ V ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
1510, 13, 14sylancr 582 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → 𝑤 ≠ ∅)
1615adantr 473 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ≠ ∅)
17 simpr 478 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
18 ral0 4269 . . . . . . . . . . . 12 𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)
19 oveq1 6885 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = (1 − 1))
20 1m1e0 11385 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2119, 20syl6eq 2849 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = 0)
2221oveq2d 6894 . . . . . . . . . . . . . 14 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = (0..^0))
23 fzo0 12747 . . . . . . . . . . . . . 14 (0..^0) = ∅
2422, 23syl6eq 2849 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = ∅)
2524raleqdv 3327 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2618, 25mpbiri 250 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2726adantr 473 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2816, 17, 273jca 1159 . . . . . . . . 9 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2928ex 402 . . . . . . . 8 ((♯‘𝑤) = 1 → (𝑤 ∈ Word (Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
309, 29impbid2 218 . . . . . . 7 ((♯‘𝑤) = 1 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺)))
3130pm5.32ri 572 . . . . . 6 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
328, 31bitri 267 . . . . 5 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
3332a1i 11 . . . 4 (0 ∈ ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
3433rabbidva2 3370 . . 3 (0 ∈ ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
352, 34eqtrd 2833 . 2 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
361, 35ax-mp 5 1 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  {crab 3093  Vcvv 3385  c0 4115  {cpr 4370   class class class wbr 4843  cfv 6101  (class class class)co 6878  0cc0 10224  1c1 10225   + caddc 10227   < clt 10363  cmin 10556  0cn0 11580  ..^cfzo 12720  chash 13370  Word cword 13534  Vtxcvtx 26231  Edgcedg 26282  WWalkscwwlks 27076   WWalksN cwwlksn 27077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-wwlks 27081  df-wwlksn 27082
This theorem is referenced by:  wwlksn0  27120  rusgrnumwwlkb0  27262
  Copyright terms: Public domain W3C validator