Step | Hyp | Ref
| Expression |
1 | | 0nn0 12248 |
. 2
⊢ 0 ∈
ℕ0 |
2 | | wwlksn 28202 |
. . 3
⊢ (0 ∈
ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)}) |
3 | | eqid 2738 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
5 | 3, 4 | iswwlks 28201 |
. . . . . . 7
⊢ (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
6 | | 0p1e1 12095 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
7 | 6 | eqeq2i 2751 |
. . . . . . 7
⊢
((♯‘𝑤) =
(0 + 1) ↔ (♯‘𝑤) = 1) |
8 | 5, 7 | anbi12i 627 |
. . . . . 6
⊢ ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1)) |
9 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺)) |
10 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V |
11 | | 0lt1 11497 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
12 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑤) =
1 → (0 < (♯‘𝑤) ↔ 0 < 1)) |
13 | 11, 12 | mpbiri 257 |
. . . . . . . . . . . 12
⊢
((♯‘𝑤) =
1 → 0 < (♯‘𝑤)) |
14 | | hashgt0n0 14080 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ V ∧ 0 <
(♯‘𝑤)) →
𝑤 ≠
∅) |
15 | 10, 13, 14 | sylancr 587 |
. . . . . . . . . . 11
⊢
((♯‘𝑤) =
1 → 𝑤 ≠
∅) |
16 | 15 | adantr 481 |
. . . . . . . . . 10
⊢
(((♯‘𝑤)
= 1 ∧ 𝑤 ∈ Word
(Vtx‘𝐺)) → 𝑤 ≠ ∅) |
17 | | simpr 485 |
. . . . . . . . . 10
⊢
(((♯‘𝑤)
= 1 ∧ 𝑤 ∈ Word
(Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺)) |
18 | | ral0 4443 |
. . . . . . . . . . . 12
⊢
∀𝑖 ∈
∅ {(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) |
19 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑤) =
1 → ((♯‘𝑤)
− 1) = (1 − 1)) |
20 | | 1m1e0 12045 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 1) = 0 |
21 | 19, 20 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑤) =
1 → ((♯‘𝑤)
− 1) = 0) |
22 | 21 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑤) =
1 → (0..^((♯‘𝑤) − 1)) = (0..^0)) |
23 | | fzo0 13411 |
. . . . . . . . . . . . . 14
⊢ (0..^0) =
∅ |
24 | 22, 23 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑤) =
1 → (0..^((♯‘𝑤) − 1)) = ∅) |
25 | 24 | raleqdv 3348 |
. . . . . . . . . . . 12
⊢
((♯‘𝑤) =
1 → (∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
26 | 18, 25 | mpbiri 257 |
. . . . . . . . . . 11
⊢
((♯‘𝑤) =
1 → ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
27 | 26 | adantr 481 |
. . . . . . . . . 10
⊢
(((♯‘𝑤)
= 1 ∧ 𝑤 ∈ Word
(Vtx‘𝐺)) →
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
28 | 16, 17, 27 | 3jca 1127 |
. . . . . . . . 9
⊢
(((♯‘𝑤)
= 1 ∧ 𝑤 ∈ Word
(Vtx‘𝐺)) →
(𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
29 | 28 | ex 413 |
. . . . . . . 8
⊢
((♯‘𝑤) =
1 → (𝑤 ∈ Word
(Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
30 | 9, 29 | impbid2 225 |
. . . . . . 7
⊢
((♯‘𝑤) =
1 → ((𝑤 ≠ ∅
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺))) |
31 | 30 | pm5.32ri 576 |
. . . . . 6
⊢ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)) |
32 | 8, 31 | bitri 274 |
. . . . 5
⊢ ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)) |
33 | 32 | a1i 11 |
. . . 4
⊢ (0 ∈
ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))) |
34 | 33 | rabbidva2 3411 |
. . 3
⊢ (0 ∈
ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}) |
35 | 2, 34 | eqtrd 2778 |
. 2
⊢ (0 ∈
ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}) |
36 | 1, 35 | ax-mp 5 |
1
⊢ (0
WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1} |