MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn0s Structured version   Visualization version   GIF version

Theorem wwlksn0s 29798
Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wwlksn0s (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Distinct variable group:   𝑤,𝐺

Proof of Theorem wwlksn0s
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12464 . 2 0 ∈ ℕ0
2 wwlksn 29774 . . 3 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)})
3 eqid 2730 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2730 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
53, 4iswwlks 29773 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6 0p1e1 12310 . . . . . . . 8 (0 + 1) = 1
76eqeq2i 2743 . . . . . . 7 ((♯‘𝑤) = (0 + 1) ↔ (♯‘𝑤) = 1)
85, 7anbi12i 628 . . . . . 6 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1))
9 simp2 1137 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
10 vex 3454 . . . . . . . . . . . 12 𝑤 ∈ V
11 0lt1 11707 . . . . . . . . . . . . 13 0 < 1
12 breq2 5114 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0 < (♯‘𝑤) ↔ 0 < 1))
1311, 12mpbiri 258 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → 0 < (♯‘𝑤))
14 hashgt0n0 14337 . . . . . . . . . . . 12 ((𝑤 ∈ V ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
1510, 13, 14sylancr 587 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → 𝑤 ≠ ∅)
1615adantr 480 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ≠ ∅)
17 simpr 484 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
18 ral0 4479 . . . . . . . . . . . 12 𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)
19 oveq1 7397 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = (1 − 1))
20 1m1e0 12265 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2119, 20eqtrdi 2781 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = 0)
2221oveq2d 7406 . . . . . . . . . . . . . 14 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = (0..^0))
23 fzo0 13651 . . . . . . . . . . . . . 14 (0..^0) = ∅
2422, 23eqtrdi 2781 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = ∅)
2524raleqdv 3301 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2618, 25mpbiri 258 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2726adantr 480 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2816, 17, 273jca 1128 . . . . . . . . 9 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2928ex 412 . . . . . . . 8 ((♯‘𝑤) = 1 → (𝑤 ∈ Word (Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
309, 29impbid2 226 . . . . . . 7 ((♯‘𝑤) = 1 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺)))
3130pm5.32ri 575 . . . . . 6 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
328, 31bitri 275 . . . . 5 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
3332a1i 11 . . . 4 (0 ∈ ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
3433rabbidva2 3410 . . 3 (0 ∈ ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
352, 34eqtrd 2765 . 2 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
361, 35ax-mp 5 1 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  c0 4299  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cmin 11412  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  Edgcedg 28981  WWalkscwwlks 29762   WWalksN cwwlksn 29763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wwlks 29767  df-wwlksn 29768
This theorem is referenced by:  wwlksn0  29800  rusgrnumwwlkb0  29908
  Copyright terms: Public domain W3C validator