![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvclteel | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvclteel.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rexr 10482 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 4 | ad2antrl 715 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ*) |
6 | mnflt 12332 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | 6 | ad2antrl 715 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → -∞ < 𝑥) |
8 | simprr 760 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ≤ 𝐴) | |
9 | 7, 8 | jca 504 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) |
10 | 5, 9 | jca 504 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) |
11 | simprl 758 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ*) | |
12 | 3 | adantr 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝐴 ∈ ℝ) |
13 | simprrl 768 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → -∞ < 𝑥) | |
14 | simprrr 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ≤ 𝐴) | |
15 | xrre 12376 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ) | |
16 | 11, 12, 13, 14, 15 | syl22anc 826 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ) |
17 | 16, 14 | jca 504 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) |
18 | 10, 17 | impbida 788 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)))) |
19 | 18 | rabbidva2 3397 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
20 | mnfxr 10494 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
21 | 3 | rexrd 10486 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | iocval 12588 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) | |
23 | 20, 21, 22 | sylancr 578 | . . . 4 ⊢ (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
24 | 19, 23 | eqtr4d 2814 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = (-∞(,]𝐴)) |
25 | iocmnfcld 23074 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | |
26 | 3, 25 | syl 17 | . . 3 ⊢ (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 24, 26 | eqeltrd 2863 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
28 | 1, 2, 3, 27 | orrvccel 31361 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {crab 3089 class class class wbr 4927 dom cdm 5404 ran crn 5405 ‘cfv 6186 (class class class)co 6974 ℝcr 10330 -∞cmnf 10468 ℝ*cxr 10469 < clt 10470 ≤ cle 10471 (,)cioo 12551 (,]cioc 12552 topGenctg 16561 Clsdccld 21322 Probcprb 31302 rRndVarcrrv 31335 ∘RV/𝑐corvc 31350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-rep 5047 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-inf2 8894 ax-ac2 9679 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 ax-pre-sup 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-int 4748 df-iun 4792 df-iin 4793 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7498 df-2nd 7499 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-1o 7901 df-2o 7902 df-oadd 7905 df-er 8085 df-map 8204 df-en 8303 df-dom 8304 df-sdom 8305 df-fin 8306 df-sup 8697 df-inf 8698 df-oi 8765 df-dju 9120 df-card 9158 df-acn 9161 df-ac 9332 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-div 11095 df-nn 11436 df-n0 11705 df-z 11791 df-uz 12056 df-q 12160 df-ioo 12555 df-ioc 12556 df-topgen 16567 df-top 21200 df-bases 21252 df-cld 21325 df-esum 30922 df-siga 31003 df-sigagen 31034 df-brsiga 31077 df-meas 31091 df-mbfm 31145 df-prob 31303 df-rrv 31336 df-orvc 31351 |
This theorem is referenced by: dstfrvunirn 31369 dstfrvinc 31371 dstfrvclim1 31372 |
Copyright terms: Public domain | W3C validator |