Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvclteel | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvclteel.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rexr 11021 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 4 | ad2antrl 725 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ*) |
6 | mnflt 12859 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | 6 | ad2antrl 725 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → -∞ < 𝑥) |
8 | simprr 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ≤ 𝐴) | |
9 | 7, 8 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) |
10 | 5, 9 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) |
11 | simprl 768 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ*) | |
12 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝐴 ∈ ℝ) |
13 | simprrl 778 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → -∞ < 𝑥) | |
14 | simprrr 779 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ≤ 𝐴) | |
15 | xrre 12903 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ) | |
16 | 11, 12, 13, 14, 15 | syl22anc 836 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ) |
17 | 16, 14 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) |
18 | 10, 17 | impbida 798 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)))) |
19 | 18 | rabbidva2 3411 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
20 | mnfxr 11032 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
21 | 3 | rexrd 11025 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | iocval 13116 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) | |
23 | 20, 21, 22 | sylancr 587 | . . . 4 ⊢ (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
24 | 19, 23 | eqtr4d 2781 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = (-∞(,]𝐴)) |
25 | iocmnfcld 23932 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | |
26 | 3, 25 | syl 17 | . . 3 ⊢ (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 24, 26 | eqeltrd 2839 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
28 | 1, 2, 3, 27 | orrvccel 32433 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 dom cdm 5589 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 (,)cioo 13079 (,]cioc 13080 topGenctg 17148 Clsdccld 22167 Probcprb 32374 rRndVarcrrv 32407 ∘RV/𝑐corvc 32422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-ioo 13083 df-ioc 13084 df-topgen 17154 df-top 22043 df-bases 22096 df-cld 22170 df-esum 31996 df-siga 32077 df-sigagen 32107 df-brsiga 32150 df-meas 32164 df-mbfm 32218 df-prob 32375 df-rrv 32408 df-orvc 32423 |
This theorem is referenced by: dstfrvunirn 32441 dstfrvinc 32443 dstfrvclim1 32444 |
Copyright terms: Public domain | W3C validator |