Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteel Structured version   Visualization version   GIF version

Theorem orvclteel 31725
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvclteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvclteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . 2 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvclteel.1 . 2 (𝜑𝐴 ∈ ℝ)
4 rexr 10681 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
54ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ*)
6 mnflt 12512 . . . . . . . . 9 (𝑥 ∈ ℝ → -∞ < 𝑥)
76ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → -∞ < 𝑥)
8 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
97, 8jca 514 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (-∞ < 𝑥𝑥𝐴))
105, 9jca 514 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴)))
11 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ*)
123adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝐴 ∈ ℝ)
13 simprrl 779 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → -∞ < 𝑥)
14 simprrr 780 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥𝐴)
15 xrre 12556 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (-∞ < 𝑥𝑥𝐴)) → 𝑥 ∈ ℝ)
1611, 12, 13, 14, 15syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ)
1716, 14jca 514 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥𝐴))
1810, 17impbida 799 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))))
1918rabbidva2 3477 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
20 mnfxr 10692 . . . . 5 -∞ ∈ ℝ*
213rexrd 10685 . . . . 5 (𝜑𝐴 ∈ ℝ*)
22 iocval 12769 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2320, 21, 22sylancr 589 . . . 4 (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2419, 23eqtr4d 2859 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (-∞(,]𝐴))
25 iocmnfcld 23371 . . . 4 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
263, 25syl 17 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
2724, 26eqeltrd 2913 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
281, 2, 3, 27orrvccel 31719 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142   class class class wbr 5059  dom cdm 5550  ran crn 5551  cfv 6350  (class class class)co 7150  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732  (,]cioc 12733  topGenctg 16705  Clsdccld 21618  Probcprb 31660  rRndVarcrrv 31693  RV/𝑐corvc 31708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-ioo 12736  df-ioc 12737  df-topgen 16711  df-top 21496  df-bases 21548  df-cld 21621  df-esum 31282  df-siga 31363  df-sigagen 31393  df-brsiga 31436  df-meas 31450  df-mbfm 31504  df-prob 31661  df-rrv 31694  df-orvc 31709
This theorem is referenced by:  dstfrvunirn  31727  dstfrvinc  31729  dstfrvclim1  31730
  Copyright terms: Public domain W3C validator