Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteel Structured version   Visualization version   GIF version

Theorem orvclteel 34464
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvclteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvclteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . 2 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvclteel.1 . 2 (𝜑𝐴 ∈ ℝ)
4 rexr 11220 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
54ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ*)
6 mnflt 13083 . . . . . . . . 9 (𝑥 ∈ ℝ → -∞ < 𝑥)
76ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → -∞ < 𝑥)
8 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
97, 8jca 511 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (-∞ < 𝑥𝑥𝐴))
105, 9jca 511 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴)))
11 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ*)
123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝐴 ∈ ℝ)
13 simprrl 780 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → -∞ < 𝑥)
14 simprrr 781 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥𝐴)
15 xrre 13129 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (-∞ < 𝑥𝑥𝐴)) → 𝑥 ∈ ℝ)
1611, 12, 13, 14, 15syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ)
1716, 14jca 511 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥𝐴))
1810, 17impbida 800 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))))
1918rabbidva2 3407 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
20 mnfxr 11231 . . . . 5 -∞ ∈ ℝ*
213rexrd 11224 . . . . 5 (𝜑𝐴 ∈ ℝ*)
22 iocval 13343 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2320, 21, 22sylancr 587 . . . 4 (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2419, 23eqtr4d 2767 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (-∞(,]𝐴))
25 iocmnfcld 24656 . . . 4 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
263, 25syl 17 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
2724, 26eqeltrd 2828 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
281, 2, 3, 27orrvccel 34458 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405   class class class wbr 5107  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  cr 11067  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  (,]cioc 13307  topGenctg 17400  Clsdccld 22903  Probcprb 34398  rRndVarcrrv 34431  RV/𝑐corvc 34447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-ioo 13310  df-ioc 13311  df-topgen 17406  df-top 22781  df-bases 22833  df-cld 22906  df-esum 34018  df-siga 34099  df-sigagen 34129  df-brsiga 34172  df-meas 34186  df-mbfm 34240  df-prob 34399  df-rrv 34432  df-orvc 34448
This theorem is referenced by:  dstfrvunirn  34466  dstfrvinc  34468  dstfrvclim1  34469
  Copyright terms: Public domain W3C validator