![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvclteel | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvclteel.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rexr 11242 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 4 | ad2antrl 726 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ*) |
6 | mnflt 13085 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | 6 | ad2antrl 726 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → -∞ < 𝑥) |
8 | simprr 771 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ≤ 𝐴) | |
9 | 7, 8 | jca 512 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) |
10 | 5, 9 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) |
11 | simprl 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ*) | |
12 | 3 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝐴 ∈ ℝ) |
13 | simprrl 779 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → -∞ < 𝑥) | |
14 | simprrr 780 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ≤ 𝐴) | |
15 | xrre 13130 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ) | |
16 | 11, 12, 13, 14, 15 | syl22anc 837 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ) |
17 | 16, 14 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) |
18 | 10, 17 | impbida 799 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)))) |
19 | 18 | rabbidva2 3433 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
20 | mnfxr 11253 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
21 | 3 | rexrd 11246 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | iocval 13343 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) | |
23 | 20, 21, 22 | sylancr 587 | . . . 4 ⊢ (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
24 | 19, 23 | eqtr4d 2774 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = (-∞(,]𝐴)) |
25 | iocmnfcld 24214 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | |
26 | 3, 25 | syl 17 | . . 3 ⊢ (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 24, 26 | eqeltrd 2832 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
28 | 1, 2, 3, 27 | orrvccel 33296 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3431 class class class wbr 5141 dom cdm 5669 ran crn 5670 ‘cfv 6532 (class class class)co 7393 ℝcr 11091 -∞cmnf 11228 ℝ*cxr 11229 < clt 11230 ≤ cle 11231 (,)cioo 13306 (,]cioc 13307 topGenctg 17365 Clsdccld 22449 Probcprb 33237 rRndVarcrrv 33270 ∘RV/𝑐corvc 33285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 ax-ac2 10440 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9419 df-inf 9420 df-oi 9487 df-dju 9878 df-card 9916 df-acn 9919 df-ac 10093 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-n0 12455 df-z 12541 df-uz 12805 df-q 12915 df-ioo 13310 df-ioc 13311 df-topgen 17371 df-top 22325 df-bases 22378 df-cld 22452 df-esum 32857 df-siga 32938 df-sigagen 32968 df-brsiga 33011 df-meas 33025 df-mbfm 33079 df-prob 33238 df-rrv 33271 df-orvc 33286 |
This theorem is referenced by: dstfrvunirn 33304 dstfrvinc 33306 dstfrvclim1 33307 |
Copyright terms: Public domain | W3C validator |