Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvclteel | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvclteel.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rexr 10952 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 4 | ad2antrl 724 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ*) |
6 | mnflt 12788 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | 6 | ad2antrl 724 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → -∞ < 𝑥) |
8 | simprr 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ≤ 𝐴) | |
9 | 7, 8 | jca 511 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) |
10 | 5, 9 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) |
11 | simprl 767 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ*) | |
12 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝐴 ∈ ℝ) |
13 | simprrl 777 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → -∞ < 𝑥) | |
14 | simprrr 778 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ≤ 𝐴) | |
15 | xrre 12832 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ) | |
16 | 11, 12, 13, 14, 15 | syl22anc 835 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ) |
17 | 16, 14 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) |
18 | 10, 17 | impbida 797 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)))) |
19 | 18 | rabbidva2 3400 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
20 | mnfxr 10963 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
21 | 3 | rexrd 10956 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | iocval 13045 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) | |
23 | 20, 21, 22 | sylancr 586 | . . . 4 ⊢ (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
24 | 19, 23 | eqtr4d 2781 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = (-∞(,]𝐴)) |
25 | iocmnfcld 23838 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | |
26 | 3, 25 | syl 17 | . . 3 ⊢ (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 24, 26 | eqeltrd 2839 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
28 | 1, 2, 3, 27 | orrvccel 32333 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 (,]cioc 13009 topGenctg 17065 Clsdccld 22075 Probcprb 32274 rRndVarcrrv 32307 ∘RV/𝑐corvc 32322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-ioc 13013 df-topgen 17071 df-top 21951 df-bases 22004 df-cld 22078 df-esum 31896 df-siga 31977 df-sigagen 32007 df-brsiga 32050 df-meas 32064 df-mbfm 32118 df-prob 32275 df-rrv 32308 df-orvc 32323 |
This theorem is referenced by: dstfrvunirn 32341 dstfrvinc 32343 dstfrvclim1 32344 |
Copyright terms: Public domain | W3C validator |