Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovncvr2 Structured version   Visualization version   GIF version

Theorem ovncvr2 44149
Description: 𝐵 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half-open intervals and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovncvr2.x (𝜑𝑋 ∈ Fin)
ovncvr2.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovncvr2.e (𝜑𝐸 ∈ ℝ+)
ovncvr2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovncvr2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovncvr2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
ovncvr2.i (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
ovncvr2.b 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
ovncvr2.t 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
Assertion
Ref Expression
ovncvr2 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑟   𝐴,𝑙,𝑎   𝐵,   𝐶,𝑎,𝑖,𝑟   𝑖,𝐸,𝑟   ,𝐼,𝑗,𝑘   𝑖,𝐼,𝑗   𝐼,𝑙,𝑗,𝑘   𝐿,𝑎,𝑖,𝑟   𝑇,   𝑋,𝑎,𝑖,𝑗,𝑟   ,𝑋,𝑘   𝑋,𝑙   𝑘,𝑎,𝜑,𝑗   𝜑,   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑙)   𝐴(,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐶(,𝑗,𝑘,𝑙)   𝐷(,𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝑇(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐸(,𝑗,𝑘,𝑎,𝑙)   𝐼(𝑟,𝑎)   𝐿(,𝑗,𝑘,𝑙)

Proof of Theorem ovncvr2
StepHypRef Expression
1 ovncvr2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
2 sseq1 3946 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐴 → (𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
32rabbidv 3414 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4 ovncvr2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
5 ovexd 7310 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
65, 4ssexd 5248 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
7 elpwg 4536 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
86, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
94, 8mpbird 256 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
10 ovex 7308 . . . . . . . . . . . . . . . . . 18 (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈ V
1110rabex 5256 . . . . . . . . . . . . . . . . 17 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V
1211a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V)
131, 3, 9, 12fvmptd3 6898 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
14 ssrab2 4013 . . . . . . . . . . . . . . . 16 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
1613, 15eqsstrd 3959 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐴) ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
17 ovncvr2.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
18 ovncvr2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
19 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (𝐶𝑎) = (𝐶𝐴))
2019eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → (𝑖 ∈ (𝐶𝑎) ↔ 𝑖 ∈ (𝐶𝐴)))
21 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴))
2221oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))
2322breq2d 5086 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))
2420, 23anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))))
2524rabbidva2 3411 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})
2625mpteq2dv 5176 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
27 rpex 42885 . . . . . . . . . . . . . . . . . . . . 21 + ∈ V
2827mptex 7099 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V)
3018, 26, 9, 29fvmptd3 6898 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
31 oveq2 7283 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3231breq2d 5086 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝐸 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3332rabbidv 3414 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐸 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
3433adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = 𝐸) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
35 ovncvr2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
36 fvex 6787 . . . . . . . . . . . . . . . . . . . 20 (𝐶𝐴) ∈ V
3736rabex 5256 . . . . . . . . . . . . . . . . . . 19 {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V)
3930, 34, 35, 38fvmptd 6882 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐴)‘𝐸) = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
4017, 39eleqtrd 2841 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
41 fveq1 6773 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4241fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝐼𝑗)))
4342mpteq2dv 5176 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
4443fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
4544breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4645elrab 3624 . . . . . . . . . . . . . . . 16 (𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4740, 46sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4847simpld 495 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝐶𝐴))
4916, 48sseldd 3922 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
50 elmapi 8637 . . . . . . . . . . . . 13 (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5149, 50syl 17 . . . . . . . . . . . 12 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5251adantr 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
53 simpr 485 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5452, 53ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
55 elmapi 8637 . . . . . . . . . 10 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5654, 55syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5756ffvelrnda 6961 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ))
58 xp1st 7863 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
5957, 58syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
6059fmpttd 6989 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
61 reex 10962 . . . . . . . . 9 ℝ ∈ V
6261a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
63 ovncvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
64 elmapg 8628 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6562, 63, 64syl2anc 584 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6665adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6760, 66mpbird 256 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
6867fmpttd 6989 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
69 ovncvr2.b . . . . . 6 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
7069a1i 11 . . . . 5 (𝜑𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))))
7170feq1d 6585 . . . 4 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
7268, 71mpbird 256 . . 3 (𝜑𝐵:ℕ⟶(ℝ ↑m 𝑋))
73 xp2nd 7864 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7457, 73syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7574fmpttd 6989 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
76 elmapg 8628 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7762, 63, 76syl2anc 584 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7877adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7975, 78mpbird 256 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
8079fmpttd 6989 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
81 ovncvr2.t . . . . . 6 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
8281a1i 11 . . . . 5 (𝜑𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))))
8382feq1d 6585 . . . 4 (𝜑 → (𝑇:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
8480, 83mpbird 256 . . 3 (𝜑𝑇:ℕ⟶(ℝ ↑m 𝑋))
8572, 84jca 512 . 2 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)))
8648, 13eleqtrd 2841 . . . . 5 (𝜑𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
87 fveq1 6773 . . . . . . . . . . . 12 (𝑙 = 𝐼 → (𝑙𝑗) = (𝐼𝑗))
8887coeq2d 5771 . . . . . . . . . . 11 (𝑙 = 𝐼 → ([,) ∘ (𝑙𝑗)) = ([,) ∘ (𝐼𝑗)))
8988fveq1d 6776 . . . . . . . . . 10 (𝑙 = 𝐼 → (([,) ∘ (𝑙𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
9089ixpeq2dv 8701 . . . . . . . . 9 (𝑙 = 𝐼X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9190adantr 481 . . . . . . . 8 ((𝑙 = 𝐼𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9291iuneq2dv 4948 . . . . . . 7 (𝑙 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9392sseq2d 3953 . . . . . 6 (𝑙 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9493elrab 3624 . . . . 5 (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9586, 94sylib 217 . . . 4 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9695simprd 496 . . 3 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9756adantr 481 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
98 simpr 485 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
9997, 98fvovco 42732 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
100 mptexg 7097 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10163, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
102101adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10370, 102fvmpt2d 6888 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
104 fvexd 6789 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ V)
105103, 104fvmpt2d 6888 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) = (1st ‘((𝐼𝑗)‘𝑘)))
106105eqcomd 2744 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = ((𝐵𝑗)‘𝑘))
107 mptexg 7097 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
10863, 107syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
109108adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
11082, 109fvmpt2d 6888 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
111 fvexd 6789 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ V)
112110, 111fvmpt2d 6888 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) = (2nd ‘((𝐼𝑗)‘𝑘)))
113112eqcomd 2744 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = ((𝑇𝑗)‘𝑘))
114106, 113oveq12d 7293 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11599, 114eqtrd 2778 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
116115ixpeq2dva 8700 . . . 4 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
117116iuneq2dv 4948 . . 3 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11896, 117sseqtrd 3961 . 2 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
119 ovncvr2.l . . . . . . . 8 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
120119a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
121 coeq2 5767 . . . . . . . . . . . . 13 ( = (𝐼𝑗) → ([,) ∘ ) = ([,) ∘ (𝐼𝑗)))
122121fveq1d 6776 . . . . . . . . . . . 12 ( = (𝐼𝑗) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
123122ad2antlr 724 . . . . . . . . . . 11 (((𝜑 = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
124123adantllr 716 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
12599adantlr 712 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
126114adantlr 712 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
127124, 125, 1263eqtrd 2782 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
128127fveq2d 6778 . . . . . . . 8 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
129128prodeq2dv 15633 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
13063adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13169fvmpt2 6886 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
13253, 102, 131syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
133132feq1d 6585 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝐵𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
13460, 133mpbird 256 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗):𝑋⟶ℝ)
135134adantr 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑗):𝑋⟶ℝ)
136135, 98ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) ∈ ℝ)
13781fvmpt2 6886 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
13853, 109, 137syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
139138feq1d 6585 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
14075, 139mpbird 256 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗):𝑋⟶ℝ)
141140adantr 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑇𝑗):𝑋⟶ℝ)
142141, 98ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) ∈ ℝ)
143 volicore 44119 . . . . . . . . 9 ((((𝐵𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
144136, 142, 143syl2anc 584 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
145130, 144fprodrecl 15663 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
146120, 129, 54, 145fvmptd 6882 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
147146eqcomd 2744 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) = (𝐿‘(𝐼𝑗)))
148147mpteq2dva 5174 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
149148fveq2d 6778 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
15047simprd 496 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
151149, 150eqbrtrd 5096 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
15285, 118, 151jca31 515 1 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Fincfn 8733  cr 10870  cle 11010  cn 11973  +crp 12730   +𝑒 cxad 12846  [,)cico 13081  cprod 15615  volcvol 24627  Σ^csumge0 43900  voln*covoln 44074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629
This theorem is referenced by:  hspmbllem3  44166
  Copyright terms: Public domain W3C validator