Proof of Theorem ovncvr2
Step | Hyp | Ref
| Expression |
1 | | ovncvr2.c |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
2 | | sseq1 3942 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘))) |
3 | 2 | rabbidv 3404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
4 | | ovncvr2.a |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
5 | | ovexd 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ
↑m 𝑋)
∈ V) |
6 | 5, 4 | ssexd 5243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ V) |
7 | | elpwg 4533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)
↔ 𝐴 ⊆ (ℝ
↑m 𝑋))) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)
↔ 𝐴 ⊆ (ℝ
↑m 𝑋))) |
9 | 4, 8 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)) |
10 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈
V |
11 | 10 | rabex 5251 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ∈ V |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ∈ V) |
13 | 1, 3, 9, 12 | fvmptd3 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘𝐴) = {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
14 | | ssrab2 4009 |
. . . . . . . . . . . . . . . 16
⊢ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
16 | 13, 15 | eqsstrd 3955 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘𝐴) ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
17 | | ovncvr2.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ ((𝐷‘𝐴)‘𝐸)) |
18 | | ovncvr2.d |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑟 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) |
19 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝐴 → (𝐶‘𝑎) = (𝐶‘𝐴)) |
20 | 19 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝐴 → (𝑖 ∈ (𝐶‘𝑎) ↔ 𝑖 ∈ (𝐶‘𝐴))) |
21 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴)) |
22 | 21 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)) |
23 | 22 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝐴 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))) |
24 | 20, 23 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶‘𝑎) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))) |
25 | 24 | rabbidva2 3400 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝐴 → {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) |
26 | 25 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})) |
27 | | rpex 42775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
ℝ+ ∈ V |
28 | 27 | mptex 7081 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V) |
30 | 18, 26, 9, 29 | fvmptd3 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})) |
31 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
32 | 31 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝐸 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
33 | 32 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝐸 → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 = 𝐸) → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
35 | | ovncvr2.e |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
36 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶‘𝐴) ∈ V |
37 | 36 | rabex 5251 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V) |
39 | 30, 34, 35, 38 | fvmptd 6864 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐷‘𝐴)‘𝐸) = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
40 | 17, 39 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
41 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝐼 → (𝑖‘𝑗) = (𝐼‘𝑗)) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝐿‘(𝑖‘𝑗)) = (𝐿‘(𝐼‘𝑗))) |
43 | 42 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) |
44 | 43 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
45 | 44 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐼 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
46 | 45 | elrab 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
47 | 40, 46 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
48 | 47 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ (𝐶‘𝐴)) |
49 | 16, 48 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
50 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) → 𝐼:ℕ⟶((ℝ
× ℝ) ↑m 𝑋)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
53 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
54 | 52, 53 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
55 | | elmapi 8595 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)
→ (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
56 | 54, 55 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
57 | 56 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐼‘𝑗)‘𝑘) ∈ (ℝ ×
ℝ)) |
58 | | xp1st 7836 |
. . . . . . . 8
⊢ (((𝐼‘𝑗)‘𝑘) ∈ (ℝ × ℝ) →
(1st ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
59 | 57, 58 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
60 | 59 | fmpttd 6971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ) |
61 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
62 | 61 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
63 | | ovncvr2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
64 | | elmapg 8586 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → ((𝑘 ∈
𝑋 ↦ (1st
‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
65 | 62, 63, 64 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
66 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
67 | 60, 66 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋)) |
68 | 67 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑m 𝑋)) |
69 | | ovncvr2.b |
. . . . . 6
⊢ 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
70 | 69 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))))) |
71 | 70 | feq1d 6569 |
. . . 4
⊢ (𝜑 → (𝐵:ℕ⟶(ℝ ↑m
𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑m 𝑋))) |
72 | 68, 71 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐵:ℕ⟶(ℝ ↑m
𝑋)) |
73 | | xp2nd 7837 |
. . . . . . . 8
⊢ (((𝐼‘𝑗)‘𝑘) ∈ (ℝ × ℝ) →
(2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
74 | 57, 73 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
75 | 74 | fmpttd 6971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ) |
76 | | elmapg 8586 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → ((𝑘 ∈
𝑋 ↦ (2nd
‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
77 | 62, 63, 76 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
78 | 77 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
79 | 75, 78 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋)) |
80 | 79 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑m 𝑋)) |
81 | | ovncvr2.t |
. . . . . 6
⊢ 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
82 | 81 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))))) |
83 | 82 | feq1d 6569 |
. . . 4
⊢ (𝜑 → (𝑇:ℕ⟶(ℝ ↑m
𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑m 𝑋))) |
84 | 80, 83 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝑇:ℕ⟶(ℝ ↑m
𝑋)) |
85 | 72, 84 | jca 511 |
. 2
⊢ (𝜑 → (𝐵:ℕ⟶(ℝ ↑m
𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m
𝑋))) |
86 | 48, 13 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
87 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝐼 → (𝑙‘𝑗) = (𝐼‘𝑗)) |
88 | 87 | coeq2d 5760 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐼 → ([,) ∘ (𝑙‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
89 | 88 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐼 → (([,) ∘ (𝑙‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
90 | 89 | ixpeq2dv 8659 |
. . . . . . . . 9
⊢ (𝑙 = 𝐼 → X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
91 | 90 | adantr 480 |
. . . . . . . 8
⊢ ((𝑙 = 𝐼 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
92 | 91 | iuneq2dv 4945 |
. . . . . . 7
⊢ (𝑙 = 𝐼 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
93 | 92 | sseq2d 3949 |
. . . . . 6
⊢ (𝑙 = 𝐼 → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
94 | 93 | elrab 3617 |
. . . . 5
⊢ (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∧ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
95 | 86, 94 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝐼 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∧ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
96 | 95 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
97 | 56 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
98 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
99 | 97, 98 | fvovco 42621 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘)))) |
100 | | mptexg 7079 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
101 | 63, 100 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
102 | 101 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
103 | 70, 102 | fvmpt2d 6870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
104 | | fvexd 6771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) ∈ V) |
105 | 103, 104 | fvmpt2d 6870 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑗)‘𝑘) = (1st ‘((𝐼‘𝑗)‘𝑘))) |
106 | 105 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) = ((𝐵‘𝑗)‘𝑘)) |
107 | | mptexg 7079 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
108 | 63, 107 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
109 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
110 | 82, 109 | fvmpt2d 6870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
111 | | fvexd 6771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ V) |
112 | 110, 111 | fvmpt2d 6870 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑗)‘𝑘) = (2nd ‘((𝐼‘𝑗)‘𝑘))) |
113 | 112 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) = ((𝑇‘𝑗)‘𝑘)) |
114 | 106, 113 | oveq12d 7273 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘))) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
115 | 99, 114 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
116 | 115 | ixpeq2dva 8658 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
117 | 116 | iuneq2dv 4945 |
. . 3
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
118 | 96, 117 | sseqtrd 3957 |
. 2
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
119 | | ovncvr2.l |
. . . . . . . 8
⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑘))) |
120 | 119 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑘)))) |
121 | | coeq2 5756 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝐼‘𝑗) → ([,) ∘ ℎ) = ([,) ∘ (𝐼‘𝑗))) |
122 | 121 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐼‘𝑗) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
123 | 122 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
124 | 123 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
125 | 99 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘)))) |
126 | 114 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘))) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
127 | 124, 125,
126 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
128 | 127 | fveq2d 6760 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ ℎ)‘𝑘)) = (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
129 | 128 | prodeq2dv 15561 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
130 | 63 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
131 | 69 | fvmpt2 6868 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
132 | 53, 102, 131 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
133 | 132 | feq1d 6569 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐵‘𝑗):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
134 | 60, 133 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗):𝑋⟶ℝ) |
135 | 134 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑗):𝑋⟶ℝ) |
136 | 135, 98 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑗)‘𝑘) ∈ ℝ) |
137 | 81 | fvmpt2 6868 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
138 | 53, 109, 137 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
139 | 138 | feq1d 6569 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑗):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
140 | 75, 139 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗):𝑋⟶ℝ) |
141 | 140 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝑇‘𝑗):𝑋⟶ℝ) |
142 | 141, 98 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑗)‘𝑘) ∈ ℝ) |
143 | | volicore 44009 |
. . . . . . . . 9
⊢ ((((𝐵‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇‘𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
144 | 136, 142,
143 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
145 | 130, 144 | fprodrecl 15591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
146 | 120, 129,
54, 145 | fvmptd 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝐼‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
147 | 146 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) = (𝐿‘(𝐼‘𝑗))) |
148 | 147 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) |
149 | 148 | fveq2d 6760 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
150 | 47 | simprd 495 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
151 | 149, 150 | eqbrtrd 5092 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
152 | 85, 118, 151 | jca31 514 |
1
⊢ (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m
𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m
𝑋)) ∧ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |