Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovncvr2 Structured version   Visualization version   GIF version

Theorem ovncvr2 42913
Description: 𝐵 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half-open intervals and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovncvr2.x (𝜑𝑋 ∈ Fin)
ovncvr2.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovncvr2.e (𝜑𝐸 ∈ ℝ+)
ovncvr2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovncvr2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovncvr2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
ovncvr2.i (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
ovncvr2.b 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
ovncvr2.t 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
Assertion
Ref Expression
ovncvr2 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑟   𝐴,𝑙,𝑎   𝐵,   𝐶,𝑎,𝑖,𝑟   𝑖,𝐸,𝑟   ,𝐼,𝑗,𝑘   𝑖,𝐼,𝑗   𝐼,𝑙,𝑗,𝑘   𝐿,𝑎,𝑖,𝑟   𝑇,   𝑋,𝑎,𝑖,𝑗,𝑟   ,𝑋,𝑘   𝑋,𝑙   𝑘,𝑎,𝜑,𝑗   𝜑,   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑙)   𝐴(,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐶(,𝑗,𝑘,𝑙)   𝐷(,𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝑇(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐸(,𝑗,𝑘,𝑎,𝑙)   𝐼(𝑟,𝑎)   𝐿(,𝑗,𝑘,𝑙)

Proof of Theorem ovncvr2
StepHypRef Expression
1 ovncvr2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
2 sseq1 3992 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐴 → (𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
32rabbidv 3480 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4 ovncvr2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
5 ovexd 7191 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
65, 4ssexd 5228 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
7 elpwg 4542 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
86, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
94, 8mpbird 259 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
10 ovex 7189 . . . . . . . . . . . . . . . . . 18 (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈ V
1110rabex 5235 . . . . . . . . . . . . . . . . 17 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V
1211a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V)
131, 3, 9, 12fvmptd3 6791 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
14 ssrab2 4056 . . . . . . . . . . . . . . . 16 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
1613, 15eqsstrd 4005 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐴) ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
17 ovncvr2.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
18 ovncvr2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
19 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (𝐶𝑎) = (𝐶𝐴))
2019eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → (𝑖 ∈ (𝐶𝑎) ↔ 𝑖 ∈ (𝐶𝐴)))
21 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴))
2221oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))
2322breq2d 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))
2420, 23anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))))
2524rabbidva2 3476 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})
2625mpteq2dv 5162 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
27 rpex 41634 . . . . . . . . . . . . . . . . . . . . 21 + ∈ V
2827mptex 6986 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V)
3018, 26, 9, 29fvmptd3 6791 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
31 oveq2 7164 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3231breq2d 5078 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝐸 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3332rabbidv 3480 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐸 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
3433adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = 𝐸) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
35 ovncvr2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
36 fvex 6683 . . . . . . . . . . . . . . . . . . . 20 (𝐶𝐴) ∈ V
3736rabex 5235 . . . . . . . . . . . . . . . . . . 19 {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V)
3930, 34, 35, 38fvmptd 6775 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐴)‘𝐸) = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
4017, 39eleqtrd 2915 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
41 fveq1 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4241fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝐼𝑗)))
4342mpteq2dv 5162 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
4443fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
4544breq1d 5076 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4645elrab 3680 . . . . . . . . . . . . . . . 16 (𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4740, 46sylib 220 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4847simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝐶𝐴))
4916, 48sseldd 3968 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
50 elmapi 8428 . . . . . . . . . . . . 13 (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5149, 50syl 17 . . . . . . . . . . . 12 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5251adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
53 simpr 487 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5452, 53ffvelrnd 6852 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
55 elmapi 8428 . . . . . . . . . 10 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5654, 55syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5756ffvelrnda 6851 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ))
58 xp1st 7721 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
5957, 58syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
6059fmpttd 6879 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
61 reex 10628 . . . . . . . . 9 ℝ ∈ V
6261a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
63 ovncvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
64 elmapg 8419 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6562, 63, 64syl2anc 586 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6665adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6760, 66mpbird 259 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
6867fmpttd 6879 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
69 ovncvr2.b . . . . . 6 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
7069a1i 11 . . . . 5 (𝜑𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))))
7170feq1d 6499 . . . 4 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
7268, 71mpbird 259 . . 3 (𝜑𝐵:ℕ⟶(ℝ ↑m 𝑋))
73 xp2nd 7722 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7457, 73syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7574fmpttd 6879 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
76 elmapg 8419 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7762, 63, 76syl2anc 586 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7877adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7975, 78mpbird 259 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
8079fmpttd 6879 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
81 ovncvr2.t . . . . . 6 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
8281a1i 11 . . . . 5 (𝜑𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))))
8382feq1d 6499 . . . 4 (𝜑 → (𝑇:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
8480, 83mpbird 259 . . 3 (𝜑𝑇:ℕ⟶(ℝ ↑m 𝑋))
8572, 84jca 514 . 2 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)))
8648, 13eleqtrd 2915 . . . . 5 (𝜑𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
87 fveq1 6669 . . . . . . . . . . . 12 (𝑙 = 𝐼 → (𝑙𝑗) = (𝐼𝑗))
8887coeq2d 5733 . . . . . . . . . . 11 (𝑙 = 𝐼 → ([,) ∘ (𝑙𝑗)) = ([,) ∘ (𝐼𝑗)))
8988fveq1d 6672 . . . . . . . . . 10 (𝑙 = 𝐼 → (([,) ∘ (𝑙𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
9089ixpeq2dv 8477 . . . . . . . . 9 (𝑙 = 𝐼X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9190adantr 483 . . . . . . . 8 ((𝑙 = 𝐼𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9291iuneq2dv 4943 . . . . . . 7 (𝑙 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9392sseq2d 3999 . . . . . 6 (𝑙 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9493elrab 3680 . . . . 5 (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9586, 94sylib 220 . . . 4 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9695simprd 498 . . 3 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9756adantr 483 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
98 simpr 487 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
9997, 98fvovco 41475 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
100 mptexg 6984 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10163, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
102101adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10370, 102fvmpt2d 6781 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
104 fvexd 6685 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ V)
105103, 104fvmpt2d 6781 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) = (1st ‘((𝐼𝑗)‘𝑘)))
106105eqcomd 2827 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = ((𝐵𝑗)‘𝑘))
107 mptexg 6984 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
10863, 107syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
109108adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
11082, 109fvmpt2d 6781 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
111 fvexd 6685 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ V)
112110, 111fvmpt2d 6781 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) = (2nd ‘((𝐼𝑗)‘𝑘)))
113112eqcomd 2827 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = ((𝑇𝑗)‘𝑘))
114106, 113oveq12d 7174 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11599, 114eqtrd 2856 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
116115ixpeq2dva 8476 . . . 4 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
117116iuneq2dv 4943 . . 3 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11896, 117sseqtrd 4007 . 2 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
119 ovncvr2.l . . . . . . . 8 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
120119a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
121 coeq2 5729 . . . . . . . . . . . . 13 ( = (𝐼𝑗) → ([,) ∘ ) = ([,) ∘ (𝐼𝑗)))
122121fveq1d 6672 . . . . . . . . . . . 12 ( = (𝐼𝑗) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
123122ad2antlr 725 . . . . . . . . . . 11 (((𝜑 = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
124123adantllr 717 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
12599adantlr 713 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
126114adantlr 713 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
127124, 125, 1263eqtrd 2860 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
128127fveq2d 6674 . . . . . . . 8 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
129128prodeq2dv 15277 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
13063adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13169fvmpt2 6779 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
13253, 102, 131syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
133132feq1d 6499 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝐵𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
13460, 133mpbird 259 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗):𝑋⟶ℝ)
135134adantr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑗):𝑋⟶ℝ)
136135, 98ffvelrnd 6852 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) ∈ ℝ)
13781fvmpt2 6779 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
13853, 109, 137syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
139138feq1d 6499 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
14075, 139mpbird 259 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗):𝑋⟶ℝ)
141140adantr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑇𝑗):𝑋⟶ℝ)
142141, 98ffvelrnd 6852 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) ∈ ℝ)
143 volicore 42883 . . . . . . . . 9 ((((𝐵𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
144136, 142, 143syl2anc 586 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
145130, 144fprodrecl 15307 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
146120, 129, 54, 145fvmptd 6775 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
147146eqcomd 2827 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) = (𝐿‘(𝐼𝑗)))
148147mpteq2dva 5161 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
149148fveq2d 6674 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
15047simprd 498 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
151149, 150eqbrtrd 5088 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
15285, 118, 151jca31 517 1 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  wss 3936  𝒫 cpw 4539   ciun 4919   class class class wbr 5066  cmpt 5146   × cxp 5553  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  m cmap 8406  Xcixp 8461  Fincfn 8509  cr 10536  cle 10676  cn 11638  +crp 12390   +𝑒 cxad 12506  [,)cico 12741  cprod 15259  volcvol 24064  Σ^csumge0 42664  voln*covoln 42838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066
This theorem is referenced by:  hspmbllem3  42930
  Copyright terms: Public domain W3C validator