Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovncvr2 Structured version   Visualization version   GIF version

Theorem ovncvr2 46532
Description: 𝐵 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half-open intervals and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovncvr2.x (𝜑𝑋 ∈ Fin)
ovncvr2.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovncvr2.e (𝜑𝐸 ∈ ℝ+)
ovncvr2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovncvr2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovncvr2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
ovncvr2.i (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
ovncvr2.b 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
ovncvr2.t 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
Assertion
Ref Expression
ovncvr2 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑟   𝐴,𝑙,𝑎   𝐵,   𝐶,𝑎,𝑖,𝑟   𝑖,𝐸,𝑟   ,𝐼,𝑗,𝑘   𝑖,𝐼,𝑗   𝐼,𝑙,𝑗,𝑘   𝐿,𝑎,𝑖,𝑟   𝑇,   𝑋,𝑎,𝑖,𝑗,𝑟   ,𝑋,𝑘   𝑋,𝑙   𝑘,𝑎,𝜑,𝑗   𝜑,   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑙)   𝐴(,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐶(,𝑗,𝑘,𝑙)   𝐷(,𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝑇(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐸(,𝑗,𝑘,𝑎,𝑙)   𝐼(𝑟,𝑎)   𝐿(,𝑗,𝑘,𝑙)

Proof of Theorem ovncvr2
StepHypRef Expression
1 ovncvr2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
2 sseq1 4034 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐴 → (𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
32rabbidv 3451 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
4 ovncvr2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
5 ovexd 7483 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
65, 4ssexd 5342 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
7 elpwg 4625 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
86, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ 𝒫 (ℝ ↑m 𝑋) ↔ 𝐴 ⊆ (ℝ ↑m 𝑋)))
94, 8mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
10 ovex 7481 . . . . . . . . . . . . . . . . . 18 (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈ V
1110rabex 5357 . . . . . . . . . . . . . . . . 17 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V
1211a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V)
131, 3, 9, 12fvmptd3 7052 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
14 ssrab2 4103 . . . . . . . . . . . . . . . 16 {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
1613, 15eqsstrd 4047 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐴) ⊆ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
17 ovncvr2.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
18 ovncvr2.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
19 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (𝐶𝑎) = (𝐶𝐴))
2019eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → (𝑖 ∈ (𝐶𝑎) ↔ 𝑖 ∈ (𝐶𝐴)))
21 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴))
2221oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))
2322breq2d 5178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))
2420, 23anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))))
2524rabbidva2 3445 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})
2625mpteq2dv 5268 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
27 rpex 45261 . . . . . . . . . . . . . . . . . . . . 21 + ∈ V
2827mptex 7260 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V)
3018, 26, 9, 29fvmptd3 7052 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
31 oveq2 7456 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3231breq2d 5178 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝐸 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3332rabbidv 3451 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐸 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
3433adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = 𝐸) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
35 ovncvr2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
36 fvex 6933 . . . . . . . . . . . . . . . . . . . 20 (𝐶𝐴) ∈ V
3736rabex 5357 . . . . . . . . . . . . . . . . . . 19 {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V)
3930, 34, 35, 38fvmptd 7036 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐴)‘𝐸) = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
4017, 39eleqtrd 2846 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
41 fveq1 6919 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4241fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝐼𝑗)))
4342mpteq2dv 5268 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
4443fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
4544breq1d 5176 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4645elrab 3708 . . . . . . . . . . . . . . . 16 (𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4740, 46sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4847simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝐶𝐴))
4916, 48sseldd 4009 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
50 elmapi 8907 . . . . . . . . . . . . 13 (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5149, 50syl 17 . . . . . . . . . . . 12 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
5251adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
53 simpr 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5452, 53ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
55 elmapi 8907 . . . . . . . . . 10 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5654, 55syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
5756ffvelcdmda 7118 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ))
58 xp1st 8062 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
5957, 58syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
6059fmpttd 7149 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
61 reex 11275 . . . . . . . . 9 ℝ ∈ V
6261a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
63 ovncvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
64 elmapg 8897 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6562, 63, 64syl2anc 583 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6665adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
6760, 66mpbird 257 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
6867fmpttd 7149 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
69 ovncvr2.b . . . . . 6 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
7069a1i 11 . . . . 5 (𝜑𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))))
7170feq1d 6732 . . . 4 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
7268, 71mpbird 257 . . 3 (𝜑𝐵:ℕ⟶(ℝ ↑m 𝑋))
73 xp2nd 8063 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7457, 73syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
7574fmpttd 7149 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
76 elmapg 8897 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7762, 63, 76syl2anc 583 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7877adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7975, 78mpbird 257 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑m 𝑋))
8079fmpttd 7149 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋))
81 ovncvr2.t . . . . . 6 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
8281a1i 11 . . . . 5 (𝜑𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))))
8382feq1d 6732 . . . 4 (𝜑 → (𝑇:ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑m 𝑋)))
8480, 83mpbird 257 . . 3 (𝜑𝑇:ℕ⟶(ℝ ↑m 𝑋))
8572, 84jca 511 . 2 (𝜑 → (𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)))
8648, 13eleqtrd 2846 . . . . 5 (𝜑𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
87 fveq1 6919 . . . . . . . . . . . 12 (𝑙 = 𝐼 → (𝑙𝑗) = (𝐼𝑗))
8887coeq2d 5887 . . . . . . . . . . 11 (𝑙 = 𝐼 → ([,) ∘ (𝑙𝑗)) = ([,) ∘ (𝐼𝑗)))
8988fveq1d 6922 . . . . . . . . . 10 (𝑙 = 𝐼 → (([,) ∘ (𝑙𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
9089ixpeq2dv 8971 . . . . . . . . 9 (𝑙 = 𝐼X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9190adantr 480 . . . . . . . 8 ((𝑙 = 𝐼𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9291iuneq2dv 5039 . . . . . . 7 (𝑙 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9392sseq2d 4041 . . . . . 6 (𝑙 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9493elrab 3708 . . . . 5 (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9586, 94sylib 218 . . . 4 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
9695simprd 495 . . 3 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
9756adantr 480 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
98 simpr 484 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
9997, 98fvovco 45100 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
100 mptexg 7258 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10163, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
102101adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
10370, 102fvmpt2d 7042 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
104 fvexd 6935 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ V)
105103, 104fvmpt2d 7042 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) = (1st ‘((𝐼𝑗)‘𝑘)))
106105eqcomd 2746 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = ((𝐵𝑗)‘𝑘))
107 mptexg 7258 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
10863, 107syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
109108adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
11082, 109fvmpt2d 7042 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
111 fvexd 6935 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ V)
112110, 111fvmpt2d 7042 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) = (2nd ‘((𝐼𝑗)‘𝑘)))
113112eqcomd 2746 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = ((𝑇𝑗)‘𝑘))
114106, 113oveq12d 7466 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11599, 114eqtrd 2780 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
116115ixpeq2dva 8970 . . . 4 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
117116iuneq2dv 5039 . . 3 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
11896, 117sseqtrd 4049 . 2 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
119 ovncvr2.l . . . . . . . 8 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
120119a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
121 coeq2 5883 . . . . . . . . . . . . 13 ( = (𝐼𝑗) → ([,) ∘ ) = ([,) ∘ (𝐼𝑗)))
122121fveq1d 6922 . . . . . . . . . . . 12 ( = (𝐼𝑗) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
123122ad2antlr 726 . . . . . . . . . . 11 (((𝜑 = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
124123adantllr 718 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
12599adantlr 714 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
126114adantlr 714 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
127124, 125, 1263eqtrd 2784 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
128127fveq2d 6924 . . . . . . . 8 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
129128prodeq2dv 15970 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
13063adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
13169fvmpt2 7040 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
13253, 102, 131syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
133132feq1d 6732 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝐵𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
13460, 133mpbird 257 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗):𝑋⟶ℝ)
135134adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑗):𝑋⟶ℝ)
136135, 98ffvelcdmd 7119 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) ∈ ℝ)
13781fvmpt2 7040 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
13853, 109, 137syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
139138feq1d 6732 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
14075, 139mpbird 257 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗):𝑋⟶ℝ)
141140adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑇𝑗):𝑋⟶ℝ)
142141, 98ffvelcdmd 7119 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) ∈ ℝ)
143 volicore 46502 . . . . . . . . 9 ((((𝐵𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
144136, 142, 143syl2anc 583 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
145130, 144fprodrecl 16001 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
146120, 129, 54, 145fvmptd 7036 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
147146eqcomd 2746 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) = (𝐿‘(𝐼𝑗)))
148147mpteq2dva 5266 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
149148fveq2d 6924 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
15047simprd 495 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
151149, 150eqbrtrd 5188 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
15285, 118, 151jca31 514 1 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑m 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑m 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  m cmap 8884  Xcixp 8955  Fincfn 9003  cr 11183  cle 11325  cn 12293  +crp 13057   +𝑒 cxad 13173  [,)cico 13409  cprod 15951  volcvol 25517  Σ^csumge0 46283  voln*covoln 46457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by:  hspmbllem3  46549
  Copyright terms: Public domain W3C validator