Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablnsg | Structured version Visualization version GIF version |
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
ablnsg | ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | ablcom 19319 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
4 | 3 | 3expb 1118 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
6 | 5 | ralrimivva 3114 | . . 3 ⊢ (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
7 | 1, 2 | isnsg 18698 | . . . 4 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥))) |
8 | 7 | rbaib 538 | . . 3 ⊢ (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
10 | 9 | eqrdv 2736 | 1 ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 SubGrpcsubg 18664 NrmSGrpcnsg 18665 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subg 18667 df-nsg 18668 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: qusabl 19381 ablsimpnosubgd 19622 ablsimpgprmd 19633 qus1 20419 qusrhm 20421 quslmod 31456 quslmhm 31457 lidlnsg 31523 qusdimsum 31611 |
Copyright terms: Public domain | W3C validator |