MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnsg Structured version   Visualization version   GIF version

Theorem ablnsg 19828
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))

Proof of Theorem ablnsg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2735 . . . . . . 7 (+g𝐺) = (+g𝐺)
31, 2ablcom 19780 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
433expb 1120 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
54eleq1d 2819 . . . 4 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
65ralrimivva 3187 . . 3 (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
71, 2isnsg 19138 . . . 4 (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥)))
87rbaib 538 . . 3 (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
96, 8syl 17 . 2 (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
109eqrdv 2733 1 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  SubGrpcsubg 19103  NrmSGrpcnsg 19104  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-subg 19106  df-nsg 19107  df-cmn 19763  df-abl 19764
This theorem is referenced by:  qusabl  19846  ablsimpnosubgd  20087  ablsimpgprmd  20098  rngansg  20130  lidlnsg  21209  qus2idrng  21234  qus1  21235  qusrhm  21237  quslmod  33373  quslmhm  33374  qusdimsum  33668
  Copyright terms: Public domain W3C validator