MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnsg Structured version   Visualization version   GIF version

Theorem ablnsg 19744
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))

Proof of Theorem ablnsg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
31, 2ablcom 19696 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
433expb 1120 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
54eleq1d 2813 . . . 4 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
65ralrimivva 3172 . . 3 (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
71, 2isnsg 19052 . . . 4 (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥)))
87rbaib 538 . . 3 (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
96, 8syl 17 . 2 (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
109eqrdv 2727 1 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  SubGrpcsubg 19017  NrmSGrpcnsg 19018  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-subg 19020  df-nsg 19021  df-cmn 19679  df-abl 19680
This theorem is referenced by:  qusabl  19762  ablsimpnosubgd  20003  ablsimpgprmd  20014  rngansg  20073  lidlnsg  21173  qus2idrng  21198  qus1  21199  qusrhm  21201  quslmod  33308  quslmhm  33309  qusdimsum  33603
  Copyright terms: Public domain W3C validator