![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablnsg | Structured version Visualization version GIF version |
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
ablnsg | ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2726 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | ablcom 19797 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
4 | 3 | 3expb 1117 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
5 | 4 | eleq1d 2811 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
6 | 5 | ralrimivva 3191 | . . 3 ⊢ (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
7 | 1, 2 | isnsg 19149 | . . . 4 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥))) |
8 | 7 | rbaib 537 | . . 3 ⊢ (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
10 | 9 | eqrdv 2724 | 1 ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 SubGrpcsubg 19114 NrmSGrpcnsg 19115 Abelcabl 19779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-subg 19117 df-nsg 19118 df-cmn 19780 df-abl 19781 |
This theorem is referenced by: qusabl 19863 ablsimpnosubgd 20104 ablsimpgprmd 20115 rngansg 20153 lidlnsg 21237 qus2idrng 21262 qus1 21263 qusrhm 21265 quslmod 33233 quslmhm 33234 qusdimsum 33523 |
Copyright terms: Public domain | W3C validator |