| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablnsg | Structured version Visualization version GIF version | ||
| Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| ablnsg | ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ablcom 19780 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
| 4 | 3 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
| 6 | 5 | ralrimivva 3187 | . . 3 ⊢ (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
| 7 | 1, 2 | isnsg 19138 | . . . 4 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥))) |
| 8 | 7 | rbaib 538 | . . 3 ⊢ (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
| 10 | 9 | eqrdv 2733 | 1 ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 SubGrpcsubg 19103 NrmSGrpcnsg 19104 Abelcabl 19762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-subg 19106 df-nsg 19107 df-cmn 19763 df-abl 19764 |
| This theorem is referenced by: qusabl 19846 ablsimpnosubgd 20087 ablsimpgprmd 20098 rngansg 20130 lidlnsg 21209 qus2idrng 21234 qus1 21235 qusrhm 21237 quslmod 33373 quslmhm 33374 qusdimsum 33668 |
| Copyright terms: Public domain | W3C validator |