Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit3 Structured version   Visualization version   GIF version

Theorem fzsplit3 32749
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
Assertion
Ref Expression
fzsplit3 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplit3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13445 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 12598 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 elfzelz 13445 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
43zred 12598 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ)
5 1red 11135 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℝ)
64, 5resubcld 11566 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℝ)
7 lelttric 11241 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
82, 6, 7syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
9 elfzuz 13441 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
10 1zzd 12524 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℤ)
113, 10zsubcld 12603 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
12 elfz5 13437 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
139, 11, 12syl2anr 597 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
14 elfzuz3 13442 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 481 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 13439 . . . . . . . . 9 (𝑥 ∈ (𝐾...𝑁) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 538 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
1815, 17syl 17 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
19 eluz 12767 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
203, 1, 19syl2an 596 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
21 zlem1lt 12545 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
223, 1, 21syl2an 596 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
2318, 20, 223bitrd 305 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝐾 − 1) < 𝑥))
2413, 23orbi12d 918 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)) ↔ (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥)))
258, 24mpbird 257 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
26 elfzuz 13441 . . . . . . 7 (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (ℤ𝑀))
2726adantl 481 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (ℤ𝑀))
28 elfzuz3 13442 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2928adantr 480 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝐾))
30 elfzuz3 13442 . . . . . . . . . 10 (𝑥 ∈ (𝑀...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝑥))
3130adantl 481 . . . . . . . . 9 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝑥))
32 peano2uz 12820 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ𝑥) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
3331, 32syl 17 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
344recnd 11162 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
355recnd 11162 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℂ)
3634, 35npcand 11497 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
3736eleq1d 2813 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3837adantr 480 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3933, 38mpbid 232 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ (ℤ𝑥))
40 uztrn 12771 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
4129, 39, 40syl2anc 584 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝑥))
42 elfzuzb 13439 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
4327, 41, 42sylanbrc 583 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
44 elfzuz 13441 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
45 elfzuz 13441 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 12771 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
4744, 45, 46syl2anr 597 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (ℤ𝑀))
48 elfzuz3 13442 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑥))
4948adantl 481 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑥))
5047, 49, 42sylanbrc 583 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
5143, 50jaodan 959 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
5225, 51impbida 800 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))))
53 elun 4106 . . 3 (𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
5452, 53bitr4di 289 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))))
5554eqrdv 2727 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3903   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cz 12489  cuz 12753  ...cfz 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429
This theorem is referenced by:  ballotlemfrceq  34496
  Copyright terms: Public domain W3C validator