Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit3 Structured version   Visualization version   GIF version

Theorem fzsplit3 32802
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
Assertion
Ref Expression
fzsplit3 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplit3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13561 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 12720 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 elfzelz 13561 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
43zred 12720 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ)
5 1red 11260 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℝ)
64, 5resubcld 11689 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℝ)
7 lelttric 11366 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
82, 6, 7syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
9 elfzuz 13557 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
10 1zzd 12646 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℤ)
113, 10zsubcld 12725 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
12 elfz5 13553 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
139, 11, 12syl2anr 597 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
14 elfzuz3 13558 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 481 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 13555 . . . . . . . . 9 (𝑥 ∈ (𝐾...𝑁) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 538 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
1815, 17syl 17 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
19 eluz 12890 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
203, 1, 19syl2an 596 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
21 zlem1lt 12667 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
223, 1, 21syl2an 596 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
2318, 20, 223bitrd 305 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝐾 − 1) < 𝑥))
2413, 23orbi12d 918 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)) ↔ (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥)))
258, 24mpbird 257 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
26 elfzuz 13557 . . . . . . 7 (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (ℤ𝑀))
2726adantl 481 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (ℤ𝑀))
28 elfzuz3 13558 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2928adantr 480 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝐾))
30 elfzuz3 13558 . . . . . . . . . 10 (𝑥 ∈ (𝑀...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝑥))
3130adantl 481 . . . . . . . . 9 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝑥))
32 peano2uz 12941 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ𝑥) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
3331, 32syl 17 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
344recnd 11287 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
355recnd 11287 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℂ)
3634, 35npcand 11622 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
3736eleq1d 2824 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3837adantr 480 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3933, 38mpbid 232 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ (ℤ𝑥))
40 uztrn 12894 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
4129, 39, 40syl2anc 584 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝑥))
42 elfzuzb 13555 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
4327, 41, 42sylanbrc 583 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
44 elfzuz 13557 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
45 elfzuz 13557 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 12894 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
4744, 45, 46syl2anr 597 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (ℤ𝑀))
48 elfzuz3 13558 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑥))
4948adantl 481 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑥))
5047, 49, 42sylanbrc 583 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
5143, 50jaodan 959 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
5225, 51impbida 801 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))))
53 elun 4163 . . 3 (𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
5452, 53bitr4di 289 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))))
5554eqrdv 2733 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  cun 3961   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  ballotlemfrceq  34510
  Copyright terms: Public domain W3C validator