Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit3 Structured version   Visualization version   GIF version

Theorem fzsplit3 30682
Description: Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
Assertion
Ref Expression
fzsplit3 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplit3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12991 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 12161 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 elfzelz 12991 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
43zred 12161 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ)
5 1red 10713 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℝ)
64, 5resubcld 11139 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℝ)
7 lelttric 10818 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
82, 6, 7syl2anr 600 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥))
9 elfzuz 12987 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
10 1zzd 12087 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℤ)
113, 10zsubcld 12166 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
12 elfz5 12983 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
139, 11, 12syl2anr 600 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
14 elfzuz3 12988 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 485 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 12985 . . . . . . . . 9 (𝑥 ∈ (𝐾...𝑁) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 542 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
1815, 17syl 17 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑥 ∈ (ℤ𝐾)))
19 eluz 12331 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
203, 1, 19syl2an 599 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ𝐾) ↔ 𝐾𝑥))
21 zlem1lt 12108 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
223, 1, 21syl2an 599 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾𝑥 ↔ (𝐾 − 1) < 𝑥))
2318, 20, 223bitrd 308 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝐾 − 1) < 𝑥))
2413, 23orbi12d 918 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)) ↔ (𝑥 ≤ (𝐾 − 1) ∨ (𝐾 − 1) < 𝑥)))
258, 24mpbird 260 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
26 elfzuz 12987 . . . . . . 7 (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (ℤ𝑀))
2726adantl 485 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (ℤ𝑀))
28 elfzuz3 12988 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2928adantr 484 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝐾))
30 elfzuz3 12988 . . . . . . . . . 10 (𝑥 ∈ (𝑀...(𝐾 − 1)) → (𝐾 − 1) ∈ (ℤ𝑥))
3130adantl 485 . . . . . . . . 9 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐾 − 1) ∈ (ℤ𝑥))
32 peano2uz 12376 . . . . . . . . 9 ((𝐾 − 1) ∈ (ℤ𝑥) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
3331, 32syl 17 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐾 − 1) + 1) ∈ (ℤ𝑥))
344recnd 10740 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
355recnd 10740 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 1 ∈ ℂ)
3634, 35npcand 11072 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
3736eleq1d 2817 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3837adantr 484 . . . . . . . 8 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐾 − 1) + 1) ∈ (ℤ𝑥) ↔ 𝐾 ∈ (ℤ𝑥)))
3933, 38mpbid 235 . . . . . . 7 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝐾 ∈ (ℤ𝑥))
40 uztrn 12335 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
4129, 39, 40syl2anc 587 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑁 ∈ (ℤ𝑥))
42 elfzuzb 12985 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
4327, 41, 42sylanbrc 586 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
44 elfzuz 12987 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
45 elfzuz 12987 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
46 uztrn 12335 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
4744, 45, 46syl2anr 600 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (ℤ𝑀))
48 elfzuz3 12988 . . . . . . 7 (𝑥 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑥))
4948adantl 485 . . . . . 6 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑥))
5047, 49, 42sylanbrc 586 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
5143, 50jaodan 957 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
5225, 51impbida 801 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁))))
53 elun 4037 . . 3 (𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)) ↔ (𝑥 ∈ (𝑀...(𝐾 − 1)) ∨ 𝑥 ∈ (𝐾...𝑁)))
5452, 53bitr4di 292 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))))
5554eqrdv 2736 1 (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  cun 3839   class class class wbr 5027  cfv 6333  (class class class)co 7164  cr 10607  1c1 10609   + caddc 10611   < clt 10746  cle 10747  cmin 10941  cz 12055  cuz 12317  ...cfz 12974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975
This theorem is referenced by:  ballotlemfrceq  32057
  Copyright terms: Public domain W3C validator