MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupval Structured version   Visualization version   GIF version

Theorem smupval 16470
Description: Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smupval.a (𝜑𝐴 ⊆ ℕ0)
smupval.b (𝜑𝐵 ⊆ ℕ0)
smupval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smupval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smupval (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smupval
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smupval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12902 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2839 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
4 eluzfz2b 13550 . . . 4 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
53, 4sylib 217 . . 3 (𝜑𝑁 ∈ (0...𝑁))
6 fveq2 6902 . . . . . 6 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
7 fveq2 6902 . . . . . 6 (𝑥 = 0 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
86, 7eqeq12d 2744 . . . . 5 (𝑥 = 0 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
98imbi2d 339 . . . 4 (𝑥 = 0 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))))
10 fveq2 6902 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
11 fveq2 6902 . . . . . 6 (𝑥 = 𝑘 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))
1210, 11eqeq12d 2744 . . . . 5 (𝑥 = 𝑘 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)))
1312imbi2d 339 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))))
14 fveq2 6902 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
15 fveq2 6902 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))
1614, 15eqeq12d 2744 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
1716imbi2d 339 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
18 fveq2 6902 . . . . . 6 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
19 fveq2 6902 . . . . . 6 (𝑥 = 𝑁 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
2018, 19eqeq12d 2744 . . . . 5 (𝑥 = 𝑁 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
2120imbi2d 339 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))))
22 smupval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
23 smupval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
24 smupval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2522, 23, 24smup0 16461 . . . . . 6 (𝜑 → (𝑃‘0) = ∅)
26 inss1 4231 . . . . . . . 8 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2726, 22sstrid 3993 . . . . . . 7 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
28 eqid 2728 . . . . . . 7 seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2927, 23, 28smup0 16461 . . . . . 6 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) = ∅)
3025, 29eqtr4d 2771 . . . . 5 (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
3130a1i 11 . . . 4 (𝑁 ∈ (ℤ‘0) → (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
32 oveq1 7433 . . . . . . 7 ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3322adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3423adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
35 elfzouz 13676 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
3635adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
3736, 2eleqtrrdi 2840 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
3833, 34, 24, 37smupp1 16462 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3927adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4039, 34, 28, 37smupp1 16462 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}))
41 elin 3965 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ (𝑘𝐴𝑘 ∈ (0..^𝑁)))
4241rbaib 537 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4342adantl 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4443anbi1d 629 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵) ↔ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)))
4544rabbidv 3438 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})
4645oveq2d 7442 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4740, 46eqtrd 2768 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4838, 47eqeq12d 2744 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
4932, 48imbitrrid 245 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
5049expcom 412 . . . . 5 (𝑘 ∈ (0..^𝑁) → (𝜑 → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
5150a2d 29 . . . 4 (𝑘 ∈ (0..^𝑁) → ((𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
529, 13, 17, 21, 31, 51fzind2 13790 . . 3 (𝑁 ∈ (0...𝑁) → (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
535, 52mpcom 38 . 2 (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
54 inss2 4232 . . . 4 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
5554a1i 11 . . 3 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁))
561nn0zd 12622 . . . 4 (𝜑𝑁 ∈ ℤ)
57 uzid 12875 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5856, 57syl 17 . . 3 (𝜑𝑁 ∈ (ℤ𝑁))
5927, 23, 28, 1, 55, 58smupvallem 16465 . 2 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
6053, 59eqtrd 2768 1 (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3430  cin 3948  wss 3949  c0 4326  ifcif 4532  𝒫 cpw 4606  cmpt 5235  cfv 6553  (class class class)co 7426  cmpo 7428  0cc0 11146  1c1 11147   + caddc 11149  cmin 11482  0cn0 12510  cz 12596  cuz 12860  ...cfz 13524  ..^cfzo 13667  seqcseq 14006   sadd csad 16402   smul csmu 16403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-had 1587  df-cad 1600  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673  df-dvds 16239  df-bits 16404  df-sad 16433  df-smu 16458
This theorem is referenced by:  smup1  16471  smueqlem  16472
  Copyright terms: Public domain W3C validator