Step | Hyp | Ref
| Expression |
1 | | smupval.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | nn0uz 12549 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
4 | | eluzfz2b 13194 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) ↔ 𝑁 ∈ (0...𝑁)) |
5 | 3, 4 | sylib 217 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑃‘𝑥) = (𝑃‘0)) |
7 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 0 → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)) |
8 | 6, 7 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0))) |
9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 0 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)))) |
10 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝑃‘𝑥) = (𝑃‘𝑘)) |
11 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) |
12 | 10, 11 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))) |
13 | 12 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑘 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)))) |
14 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝑃‘𝑥) = (𝑃‘(𝑘 + 1))) |
15 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))) |
16 | 14, 15 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))) |
17 | 16 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) |
18 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑃‘𝑥) = (𝑃‘𝑁)) |
19 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)) |
20 | 18, 19 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))) |
21 | 20 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))) |
22 | | smupval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
23 | | smupval.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
24 | | smupval.p |
. . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
25 | 22, 23, 24 | smup0 16114 |
. . . . . 6
⊢ (𝜑 → (𝑃‘0) = ∅) |
26 | | inss1 4159 |
. . . . . . . 8
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴 |
27 | 26, 22 | sstrid 3928 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) |
28 | | eqid 2738 |
. . . . . . 7
⊢
seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
29 | 27, 23, 28 | smup0 16114 |
. . . . . 6
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) =
∅) |
30 | 25, 29 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)) |
31 | 30 | a1i 11 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0))) |
32 | | oveq1 7262 |
. . . . . . 7
⊢ ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
33 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) |
34 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) |
35 | | elfzouz 13320 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈
(ℤ≥‘0)) |
36 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
37 | 36, 2 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
38 | 33, 34, 24, 37 | smupp1 16115 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
39 | 27 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) |
40 | 39, 34, 28, 37 | smupp1 16115 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
41 | | elin 3899 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ (0..^𝑁))) |
42 | 41 | rbaib 538 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘 ∈ 𝐴)) |
43 | 42 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘 ∈ 𝐴)) |
44 | 43 | anbi1d 629 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵) ↔ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵))) |
45 | 44 | rabbidv 3404 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) |
46 | 45 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
47 | 40, 46 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
48 | 38, 47 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}))) |
49 | 32, 48 | syl5ibr 245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))) |
50 | 49 | expcom 413 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑁) → (𝜑 → ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) |
51 | 50 | a2d 29 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑁) → ((𝜑 → (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) |
52 | 9, 13, 17, 21, 31, 51 | fzind2 13433 |
. . 3
⊢ (𝑁 ∈ (0...𝑁) → (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))) |
53 | 5, 52 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)) |
54 | | inss2 4160 |
. . . 4
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁) |
55 | 54 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) |
56 | 1 | nn0zd 12353 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
57 | | uzid 12526 |
. . . 4
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
58 | 56, 57 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
59 | 27, 23, 28, 1, 55, 58 | smupvallem 16118 |
. 2
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) |
60 | 53, 59 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑃‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) |