| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | smupval.n | . . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 2 |  | nn0uz 12920 | . . . . 5
⊢
ℕ0 = (ℤ≥‘0) | 
| 3 | 1, 2 | eleqtrdi 2851 | . . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) | 
| 4 |  | eluzfz2b 13573 | . . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) ↔ 𝑁 ∈ (0...𝑁)) | 
| 5 | 3, 4 | sylib 218 | . . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) | 
| 6 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 0 → (𝑃‘𝑥) = (𝑃‘0)) | 
| 7 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 0 → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)) | 
| 8 | 6, 7 | eqeq12d 2753 | . . . . 5
⊢ (𝑥 = 0 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0))) | 
| 9 | 8 | imbi2d 340 | . . . 4
⊢ (𝑥 = 0 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)))) | 
| 10 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 𝑘 → (𝑃‘𝑥) = (𝑃‘𝑘)) | 
| 11 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 𝑘 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) | 
| 12 | 10, 11 | eqeq12d 2753 | . . . . 5
⊢ (𝑥 = 𝑘 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))) | 
| 13 | 12 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑘 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)))) | 
| 14 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝑃‘𝑥) = (𝑃‘(𝑘 + 1))) | 
| 15 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))) | 
| 16 | 14, 15 | eqeq12d 2753 | . . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))) | 
| 17 | 16 | imbi2d 340 | . . . 4
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) | 
| 18 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 𝑁 → (𝑃‘𝑥) = (𝑃‘𝑁)) | 
| 19 |  | fveq2 6906 | . . . . . 6
⊢ (𝑥 = 𝑁 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)) | 
| 20 | 18, 19 | eqeq12d 2753 | . . . . 5
⊢ (𝑥 = 𝑁 → ((𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))) | 
| 21 | 20 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑃‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))) | 
| 22 |  | smupval.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ⊆
ℕ0) | 
| 23 |  | smupval.b | . . . . . . 7
⊢ (𝜑 → 𝐵 ⊆
ℕ0) | 
| 24 |  | smupval.p | . . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | 
| 25 | 22, 23, 24 | smup0 16516 | . . . . . 6
⊢ (𝜑 → (𝑃‘0) = ∅) | 
| 26 |  | inss1 4237 | . . . . . . . 8
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴 | 
| 27 | 26, 22 | sstrid 3995 | . . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) | 
| 28 |  | eqid 2737 | . . . . . . 7
⊢
seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | 
| 29 | 27, 23, 28 | smup0 16516 | . . . . . 6
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) =
∅) | 
| 30 | 25, 29 | eqtr4d 2780 | . . . . 5
⊢ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0)) | 
| 31 | 30 | a1i 11 | . . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 −
1))))‘0))) | 
| 32 |  | oveq1 7438 | . . . . . . 7
⊢ ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) | 
| 33 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆
ℕ0) | 
| 34 | 23 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆
ℕ0) | 
| 35 |  | elfzouz 13703 | . . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈
(ℤ≥‘0)) | 
| 36 | 35 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈
(ℤ≥‘0)) | 
| 37 | 36, 2 | eleqtrrdi 2852 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) | 
| 38 | 33, 34, 24, 37 | smupp1 16517 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) | 
| 39 | 27 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ⊆
ℕ0) | 
| 40 | 39, 34, 28, 37 | smupp1 16517 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)})) | 
| 41 |  | elin 3967 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ (0..^𝑁))) | 
| 42 | 41 | rbaib 538 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘 ∈ 𝐴)) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘 ∈ 𝐴)) | 
| 44 | 43 | anbi1d 631 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵) ↔ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵))) | 
| 45 | 44 | rabbidv 3444 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) | 
| 46 | 45 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) | 
| 47 | 40, 46 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) | 
| 48 | 38, 47 | eqeq12d 2753 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ ((𝑃‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}))) | 
| 49 | 32, 48 | imbitrrid 246 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))) | 
| 50 | 49 | expcom 413 | . . . . 5
⊢ (𝑘 ∈ (0..^𝑁) → (𝜑 → ((𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) | 
| 51 | 50 | a2d 29 | . . . 4
⊢ (𝑘 ∈ (0..^𝑁) → ((𝜑 → (𝑃‘𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))) | 
| 52 | 9, 13, 17, 21, 31, 51 | fzind2 13824 | . . 3
⊢ (𝑁 ∈ (0...𝑁) → (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))) | 
| 53 | 5, 52 | mpcom 38 | . 2
⊢ (𝜑 → (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)) | 
| 54 |  | inss2 4238 | . . . 4
⊢ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁) | 
| 55 | 54 | a1i 11 | . . 3
⊢ (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) | 
| 56 | 1 | nn0zd 12639 | . . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 57 |  | uzid 12893 | . . . 4
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) | 
| 58 | 56, 57 | syl 17 | . . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) | 
| 59 | 27, 23, 28, 1, 55, 58 | smupvallem 16520 | . 2
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) | 
| 60 | 53, 59 | eqtrd 2777 | 1
⊢ (𝜑 → (𝑃‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) |