MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupval Structured version   Visualization version   GIF version

Theorem smupval 16465
Description: Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smupval.a (𝜑𝐴 ⊆ ℕ0)
smupval.b (𝜑𝐵 ⊆ ℕ0)
smupval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smupval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smupval (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smupval
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smupval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12842 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2839 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
4 eluzfz2b 13501 . . . 4 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
53, 4sylib 218 . . 3 (𝜑𝑁 ∈ (0...𝑁))
6 fveq2 6861 . . . . . 6 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
7 fveq2 6861 . . . . . 6 (𝑥 = 0 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
86, 7eqeq12d 2746 . . . . 5 (𝑥 = 0 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
98imbi2d 340 . . . 4 (𝑥 = 0 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))))
10 fveq2 6861 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
11 fveq2 6861 . . . . . 6 (𝑥 = 𝑘 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))
1210, 11eqeq12d 2746 . . . . 5 (𝑥 = 𝑘 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)))
1312imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))))
14 fveq2 6861 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
15 fveq2 6861 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))
1614, 15eqeq12d 2746 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
1716imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
18 fveq2 6861 . . . . . 6 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
19 fveq2 6861 . . . . . 6 (𝑥 = 𝑁 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
2018, 19eqeq12d 2746 . . . . 5 (𝑥 = 𝑁 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
2120imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))))
22 smupval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
23 smupval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
24 smupval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2522, 23, 24smup0 16456 . . . . . 6 (𝜑 → (𝑃‘0) = ∅)
26 inss1 4203 . . . . . . . 8 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2726, 22sstrid 3961 . . . . . . 7 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
28 eqid 2730 . . . . . . 7 seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2927, 23, 28smup0 16456 . . . . . 6 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) = ∅)
3025, 29eqtr4d 2768 . . . . 5 (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
3130a1i 11 . . . 4 (𝑁 ∈ (ℤ‘0) → (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
32 oveq1 7397 . . . . . . 7 ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3322adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3423adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
35 elfzouz 13631 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
3736, 2eleqtrrdi 2840 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
3833, 34, 24, 37smupp1 16457 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3927adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4039, 34, 28, 37smupp1 16457 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}))
41 elin 3933 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ (𝑘𝐴𝑘 ∈ (0..^𝑁)))
4241rbaib 538 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4342adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4443anbi1d 631 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵) ↔ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)))
4544rabbidv 3416 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})
4645oveq2d 7406 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4740, 46eqtrd 2765 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4838, 47eqeq12d 2746 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
4932, 48imbitrrid 246 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
5049expcom 413 . . . . 5 (𝑘 ∈ (0..^𝑁) → (𝜑 → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
5150a2d 29 . . . 4 (𝑘 ∈ (0..^𝑁) → ((𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
529, 13, 17, 21, 31, 51fzind2 13753 . . 3 (𝑁 ∈ (0...𝑁) → (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
535, 52mpcom 38 . 2 (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
54 inss2 4204 . . . 4 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
5554a1i 11 . . 3 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁))
561nn0zd 12562 . . . 4 (𝜑𝑁 ∈ ℤ)
57 uzid 12815 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5856, 57syl 17 . . 3 (𝜑𝑁 ∈ (ℤ𝑁))
5927, 23, 28, 1, 55, 58smupvallem 16460 . 2 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
6053, 59eqtrd 2765 1 (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  seqcseq 13973   sadd csad 16397   smul csmu 16398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16399  df-sad 16428  df-smu 16453
This theorem is referenced by:  smup1  16466  smueqlem  16467
  Copyright terms: Public domain W3C validator