Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   GIF version

Theorem chpub 25482
 Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))

Proof of Theorem chpub
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chpcl 25387 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
21adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ)
3 chtcl 25372 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
43adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ)
52, 4resubcld 10922 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ∈ ℝ)
6 simpl 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
7 0red 10497 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
8 1red 10495 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
9 0lt1 11016 . . . . . . . . . 10 0 < 1
109a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
11 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
127, 8, 6, 10, 11ltletrd 10653 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
136, 12elrpd 12282 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
1413rpge0d 12289 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 𝐴)
156, 14resqrtcld 14615 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
16 ppifi 25369 . . . . 5 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1813adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈ ℝ+)
1918relogcld 24891 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
2017, 19fsumrecl 14928 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ∈ ℝ)
2113relogcld 24891 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
2215, 21remulcld 10524 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) · (log‘𝐴)) ∈ ℝ)
23 ppifi 25369 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
2423adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
25 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
2625elin2d 4103 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
27 prmnn 15851 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2826, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
2928nnrpd 12283 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3029relogcld 24891 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
3121adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
3228nnred 11507 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
33 prmuz2 15873 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3426, 33syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
35 eluz2gt1 12173 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
3634, 35syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
3732, 36rplogcld 24897 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
3831, 37rerpdivcld 12316 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
39 reflcl 13020 . . . . . . . . 9 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4038, 39syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4130, 40remulcld 10524 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
4241recnd 10522 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ)
4330recnd 10522 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
4424, 42, 43fsumsub 14980 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
45 0le0 11592 . . . . . . . . 9 0 ≤ 0
4645a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 0)
478, 6, 6, 14, 11lemul2ad 11434 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴))
486recnd 10522 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℂ)
4948sqsqrtd 14637 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
5048mulid1d 10511 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) = 𝐴)
5149, 50eqtr4d 2836 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = (𝐴 · 1))
5248sqvald 13361 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
5347, 51, 523brtr4d 5000 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) ≤ (𝐴↑2))
546, 14sqrtge0d 14618 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (√‘𝐴))
5515, 6, 54, 14le2sqd 13474 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) ≤ 𝐴 ↔ ((√‘𝐴)↑2) ≤ (𝐴↑2)))
5653, 55mpbird 258 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ≤ 𝐴)
57 iccss 12658 . . . . . . . 8 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
587, 6, 46, 56, 57syl22anc 835 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
5958ssrind 4138 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6059sselda 3895 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6141, 30resubcld 10922 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
6261recnd 10522 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
6360, 62syldan 591 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
64 eldifi 4030 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6564, 43sylan2 592 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℂ)
6665mulid2d 10512 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝))
6725elin1d 4102 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
68 0re 10496 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
696adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
70 elicc2 12655 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7168, 69, 70sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7267, 71mpbid 233 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
7372simp3d 1137 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
7464, 73sylan2 592 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝𝐴)
7564, 29sylan2 592 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ+)
7613adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ+)
7775, 76logled 24895 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
7874, 77mpbid 233 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴))
7966, 78eqbrtrd 4990 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
80 1red 10495 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ∈ ℝ)
8121adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) ∈ ℝ)
8264, 37sylan2 592 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℝ+)
8380, 81, 82lemuldivd 12334 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
8479, 83mpbid 233 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
856adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ)
8685recnd 10522 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℂ)
8786sqsqrtd 14637 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴)
88 eldifn 4031 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
8988adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9064, 26sylan2 592 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℙ)
91 elin 4096 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ (𝑝 ∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ))
9291rbaib 539 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
94 0red 10497 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ∈ ℝ)
9515adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) ∈ ℝ)
9664, 28sylan2 592 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℕ)
9796nnred 11507 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ)
9875rpge0d 12289 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ 𝑝)
99 elicc2 12655 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴))))
100 df-3an 1082 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))
10199, 100syl6bb 288 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))))
102101baibd 540 . . . . . . . . . . . . . . . . . . . . 21 (((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10394, 95, 97, 98, 102syl22anc 835 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10493, 103bitrd 280 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴)))
10589, 104mtbid 325 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴))
10695, 97ltnled 10640 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴)))
107105, 106mpbird 258 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) < 𝑝)
10854adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ (√‘𝐴))
10995, 97, 108, 98lt2sqd 13473 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2)))
110107, 109mpbid 233 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2))
11187, 110eqbrtrrd 4992 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 < (𝑝↑2))
11296nnsqcld 13459 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℕ)
113112nnrpd 12283 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℝ+)
114 logltb 24868 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+ ∧ (𝑝↑2) ∈ ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
11576, 113, 114syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
116111, 115mpbid 233 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2)))
117 2z 11868 . . . . . . . . . . . . . . 15 2 ∈ ℤ
118 relogexp 24864 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
11975, 117, 118sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
120116, 119breqtrd 4994 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝)))
121 2re 11565 . . . . . . . . . . . . . . 15 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 2 ∈ ℝ)
12381, 122, 82ltdivmul2d 12337 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝))))
124120, 123mpbird 258 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2)
125 df-2 11554 . . . . . . . . . . . 12 2 = (1 + 1)
126124, 125syl6breq 5009 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1))
12764, 38sylan2 592 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
128 1z 11866 . . . . . . . . . . . 12 1 ∈ ℤ
129 flbi 13040 . . . . . . . . . . . 12 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
130127, 128, 129sylancl 586 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
13184, 126, 130mpbir2and 709 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1)
132131oveq2d 7039 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1))
13365mulid1d 10511 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝))
134132, 133eqtrd 2833 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝))
135134oveq1d 7038 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝)))
13665subidd 10839 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0)
137135, 136eqtrd 2833 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0)
13859, 63, 137, 24fsumss 14919 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
139 chpval2 25480 . . . . . . 7 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
140139adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
141 chtval 25373 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
142141adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
143140, 142oveq12d 7041 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
14444, 138, 1433eqtr4rd 2844 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
14560, 61syldan 591 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
14660, 41syldan 591 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
14760, 37syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
148147rpge0d 12289 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
149 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
150149elin2d 4103 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℙ)
151150, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℕ)
152151nnrpd 12283 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
153152relogcld 24891 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
154146, 153subge02d 11086 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0 ≤ (log‘𝑝) ↔ (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))))
155148, 154mpbid 233 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
15660, 38syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
157 flle 13023 . . . . . . . 8 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
158156, 157syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
15960, 40syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
160159, 19, 147lemuldiv2d 12335 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))))
161158, 160mpbird 258 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴))
162145, 146, 19, 155, 161letrd 10650 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴))
16317, 145, 19, 162fsumle 14991 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
164144, 163eqbrtrd 4990 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
16521recnd 10522 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℂ)
166 fsumconst 14982 . . . . 5 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
16717, 165, 166syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
168 hashcl 13571 . . . . . . 7 (((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
16917, 168syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
170169nn0red 11810 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℝ)
171 logge0 24873 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
172 reflcl 13020 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ)
17315, 172syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℝ)
174 fzfid 13195 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘(√‘𝐴))) ∈ Fin)
175 ppisval 25367 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
17615, 175syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
177 inss1 4131 . . . . . . . . . . 11 ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (2...(⌊‘(√‘𝐴)))
178 2eluzge1 12147 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
179 fzss1 12800 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
180178, 179mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
181177, 180sstrid 3906 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
182176, 181eqsstrd 3932 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
183 ssdomg 8410 . . . . . . . . 9 ((1...(⌊‘(√‘𝐴))) ∈ Fin → (((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
184174, 182, 183sylc 65 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴))))
185 hashdom 13592 . . . . . . . . 9 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘(√‘𝐴))) ∈ Fin) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
18617, 174, 185syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
187184, 186mpbird 258 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))))
188 flge0nn0 13044 . . . . . . . . 9 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (⌊‘(√‘𝐴)) ∈ ℕ0)
18915, 54, 188syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℕ0)
190 hashfz1 13560 . . . . . . . 8 ((⌊‘(√‘𝐴)) ∈ ℕ0 → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
191189, 190syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
192187, 191breqtrd 4994 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (⌊‘(√‘𝐴)))
193 flle 13023 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
19415, 193syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
195170, 173, 15, 192, 194letrd 10650 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴))
196170, 15, 21, 171, 195lemul1ad 11433 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
197167, 196eqbrtrd 4990 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ≤ ((√‘𝐴) · (log‘𝐴)))
1985, 20, 22, 164, 197letrd 10650 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
1992, 4, 22lesubadd2d 11093 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)) ↔ (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴)))))
200198, 199mpbid 233 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1525   ∈ wcel 2083   ∖ cdif 3862   ∩ cin 3864   ⊆ wss 3865   class class class wbr 4968  ‘cfv 6232  (class class class)co 7023   ≼ cdom 8362  Fincfn 8364  ℂcc 10388  ℝcr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395   < clt 10528   ≤ cle 10529   − cmin 10723   / cdiv 11151  ℕcn 11492  2c2 11546  ℕ0cn0 11751  ℤcz 11835  ℤ≥cuz 12097  ℝ+crp 12243  [,]cicc 12595  ...cfz 12746  ⌊cfl 13014  ↑cexp 13283  ♯chash 13544  √csqrt 14430  Σcsu 14880  ℙcprime 15848  logclog 24823  θccht 25354  ψcchp 25356 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-xnn0 11822  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-pi 15263  df-dvds 15445  df-gcd 15681  df-prm 15849  df-pc 16007  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-log 24825  df-cht 25360  df-vma 25361  df-chp 25362 This theorem is referenced by:  chpchtlim  25741
 Copyright terms: Public domain W3C validator