MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   GIF version

Theorem chpub 25804
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))

Proof of Theorem chpub
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chpcl 25709 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
21adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ)
3 chtcl 25694 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
43adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ)
52, 4resubcld 11057 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ∈ ℝ)
6 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
7 0red 10633 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
8 1red 10631 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
9 0lt1 11151 . . . . . . . . . 10 0 < 1
109a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
11 simpr 488 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
127, 8, 6, 10, 11ltletrd 10789 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
136, 12elrpd 12416 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
1413rpge0d 12423 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 𝐴)
156, 14resqrtcld 14769 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
16 ppifi 25691 . . . . 5 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1813adantr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈ ℝ+)
1918relogcld 25214 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
2017, 19fsumrecl 15083 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ∈ ℝ)
2113relogcld 25214 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
2215, 21remulcld 10660 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) · (log‘𝐴)) ∈ ℝ)
23 ppifi 25691 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
2423adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
25 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
2625elin2d 4126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
27 prmnn 16008 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2826, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
2928nnrpd 12417 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3029relogcld 25214 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
3121adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
3228nnred 11640 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
33 prmuz2 16030 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3426, 33syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
35 eluz2gt1 12308 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
3634, 35syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
3732, 36rplogcld 25220 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
3831, 37rerpdivcld 12450 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
39 reflcl 13161 . . . . . . . . 9 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4038, 39syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4130, 40remulcld 10660 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
4241recnd 10658 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ)
4330recnd 10658 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
4424, 42, 43fsumsub 15135 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
45 0le0 11726 . . . . . . . . 9 0 ≤ 0
4645a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 0)
478, 6, 6, 14, 11lemul2ad 11569 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴))
486recnd 10658 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℂ)
4948sqsqrtd 14791 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
5048mulid1d 10647 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) = 𝐴)
5149, 50eqtr4d 2836 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = (𝐴 · 1))
5248sqvald 13503 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
5347, 51, 523brtr4d 5062 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) ≤ (𝐴↑2))
546, 14sqrtge0d 14772 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (√‘𝐴))
5515, 6, 54, 14le2sqd 13616 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) ≤ 𝐴 ↔ ((√‘𝐴)↑2) ≤ (𝐴↑2)))
5653, 55mpbird 260 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ≤ 𝐴)
57 iccss 12793 . . . . . . . 8 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
587, 6, 46, 56, 57syl22anc 837 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
5958ssrind 4162 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6059sselda 3915 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6141, 30resubcld 11057 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
6261recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
6360, 62syldan 594 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
64 eldifi 4054 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6564, 43sylan2 595 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℂ)
6665mulid2d 10648 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝))
6725elin1d 4125 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
68 0re 10632 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
696adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
70 elicc2 12790 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7168, 69, 70sylancr 590 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7267, 71mpbid 235 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
7372simp3d 1141 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
7464, 73sylan2 595 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝𝐴)
7564, 29sylan2 595 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ+)
7613adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ+)
7775, 76logled 25218 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
7874, 77mpbid 235 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴))
7966, 78eqbrtrd 5052 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
80 1red 10631 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ∈ ℝ)
8121adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) ∈ ℝ)
8264, 37sylan2 595 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℝ+)
8380, 81, 82lemuldivd 12468 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
8479, 83mpbid 235 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
856adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ)
8685recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℂ)
8786sqsqrtd 14791 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴)
88 eldifn 4055 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
8988adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9064, 26sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℙ)
91 elin 3897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ (𝑝 ∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ))
9291rbaib 542 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
94 0red 10633 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ∈ ℝ)
9515adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) ∈ ℝ)
9664, 28sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℕ)
9796nnred 11640 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ)
9875rpge0d 12423 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ 𝑝)
99 elicc2 12790 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴))))
100 df-3an 1086 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))
10199, 100syl6bb 290 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))))
102101baibd 543 . . . . . . . . . . . . . . . . . . . . 21 (((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10394, 95, 97, 98, 102syl22anc 837 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10493, 103bitrd 282 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴)))
10589, 104mtbid 327 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴))
10695, 97ltnled 10776 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴)))
107105, 106mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) < 𝑝)
10854adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ (√‘𝐴))
10995, 97, 108, 98lt2sqd 13615 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2)))
110107, 109mpbid 235 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2))
11187, 110eqbrtrrd 5054 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 < (𝑝↑2))
11296nnsqcld 13601 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℕ)
113112nnrpd 12417 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℝ+)
114 logltb 25191 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+ ∧ (𝑝↑2) ∈ ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
11576, 113, 114syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
116111, 115mpbid 235 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2)))
117 2z 12002 . . . . . . . . . . . . . . 15 2 ∈ ℤ
118 relogexp 25187 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
11975, 117, 118sylancl 589 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
120116, 119breqtrd 5056 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝)))
121 2re 11699 . . . . . . . . . . . . . . 15 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 2 ∈ ℝ)
12381, 122, 82ltdivmul2d 12471 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝))))
124120, 123mpbird 260 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2)
125 df-2 11688 . . . . . . . . . . . 12 2 = (1 + 1)
126124, 125breqtrdi 5071 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1))
12764, 38sylan2 595 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
128 1z 12000 . . . . . . . . . . . 12 1 ∈ ℤ
129 flbi 13181 . . . . . . . . . . . 12 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
130127, 128, 129sylancl 589 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
13184, 126, 130mpbir2and 712 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1)
132131oveq2d 7151 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1))
13365mulid1d 10647 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝))
134132, 133eqtrd 2833 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝))
135134oveq1d 7150 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝)))
13665subidd 10974 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0)
137135, 136eqtrd 2833 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0)
13859, 63, 137, 24fsumss 15074 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
139 chpval2 25802 . . . . . . 7 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
140139adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
141 chtval 25695 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
142141adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
143140, 142oveq12d 7153 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
14444, 138, 1433eqtr4rd 2844 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
14560, 61syldan 594 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
14660, 41syldan 594 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
14760, 37syldan 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
148147rpge0d 12423 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
149 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
150149elin2d 4126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℙ)
151150, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℕ)
152151nnrpd 12417 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
153152relogcld 25214 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
154146, 153subge02d 11221 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0 ≤ (log‘𝑝) ↔ (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))))
155148, 154mpbid 235 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
15660, 38syldan 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
157 flle 13164 . . . . . . . 8 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
158156, 157syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
15960, 40syldan 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
160159, 19, 147lemuldiv2d 12469 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))))
161158, 160mpbird 260 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴))
162145, 146, 19, 155, 161letrd 10786 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴))
16317, 145, 19, 162fsumle 15146 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
164144, 163eqbrtrd 5052 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
16521recnd 10658 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℂ)
166 fsumconst 15137 . . . . 5 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
16717, 165, 166syl2anc 587 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
168 hashcl 13713 . . . . . . 7 (((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
16917, 168syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
170169nn0red 11944 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℝ)
171 logge0 25196 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
172 reflcl 13161 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ)
17315, 172syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℝ)
174 fzfid 13336 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘(√‘𝐴))) ∈ Fin)
175 ppisval 25689 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
17615, 175syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
177 inss1 4155 . . . . . . . . . . 11 ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (2...(⌊‘(√‘𝐴)))
178 2eluzge1 12282 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
179 fzss1 12941 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
180178, 179mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
181177, 180sstrid 3926 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
182176, 181eqsstrd 3953 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
183 ssdomg 8538 . . . . . . . . 9 ((1...(⌊‘(√‘𝐴))) ∈ Fin → (((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
184174, 182, 183sylc 65 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴))))
185 hashdom 13736 . . . . . . . . 9 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘(√‘𝐴))) ∈ Fin) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
18617, 174, 185syl2anc 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
187184, 186mpbird 260 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))))
188 flge0nn0 13185 . . . . . . . . 9 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (⌊‘(√‘𝐴)) ∈ ℕ0)
18915, 54, 188syl2anc 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℕ0)
190 hashfz1 13702 . . . . . . . 8 ((⌊‘(√‘𝐴)) ∈ ℕ0 → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
191189, 190syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
192187, 191breqtrd 5056 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (⌊‘(√‘𝐴)))
193 flle 13164 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
19415, 193syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
195170, 173, 15, 192, 194letrd 10786 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴))
196170, 15, 21, 171, 195lemul1ad 11568 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
197167, 196eqbrtrd 5052 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ≤ ((√‘𝐴) · (log‘𝐴)))
1985, 20, 22, 164, 197letrd 10786 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
1992, 4, 22lesubadd2d 11228 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)) ↔ (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴)))))
200198, 199mpbid 235 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cdif 3878  cin 3880  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cdom 8490  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  [,]cicc 12729  ...cfz 12885  cfl 13155  cexp 13425  chash 13686  csqrt 14584  Σcsu 15034  cprime 16005  logclog 25146  θccht 25676  ψcchp 25678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cht 25682  df-vma 25683  df-chp 25684
This theorem is referenced by:  chpchtlim  26063
  Copyright terms: Public domain W3C validator