MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   GIF version

Theorem chpub 27278
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))

Proof of Theorem chpub
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chpcl 27181 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
21adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ)
3 chtcl 27166 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
43adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ)
52, 4resubcld 11688 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ∈ ℝ)
6 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
7 0red 11261 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
8 1red 11259 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
9 0lt1 11782 . . . . . . . . . 10 0 < 1
109a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
11 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
127, 8, 6, 10, 11ltletrd 11418 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
136, 12elrpd 13071 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
1413rpge0d 13078 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 𝐴)
156, 14resqrtcld 15452 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
16 ppifi 27163 . . . . 5 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1813adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈ ℝ+)
1918relogcld 26679 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
2017, 19fsumrecl 15766 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ∈ ℝ)
2113relogcld 26679 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
2215, 21remulcld 11288 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) · (log‘𝐴)) ∈ ℝ)
23 ppifi 27163 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
2423adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
25 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
2625elin2d 4214 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
27 prmnn 16707 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2826, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
2928nnrpd 13072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3029relogcld 26679 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
3121adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
3228nnred 12278 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
33 prmuz2 16729 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3426, 33syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
35 eluz2gt1 12959 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
3634, 35syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
3732, 36rplogcld 26685 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
3831, 37rerpdivcld 13105 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
39 reflcl 13832 . . . . . . . . 9 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4038, 39syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4130, 40remulcld 11288 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
4241recnd 11286 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ)
4330recnd 11286 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
4424, 42, 43fsumsub 15820 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
45 0le0 12364 . . . . . . . . 9 0 ≤ 0
4645a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 0)
478, 6, 6, 14, 11lemul2ad 12205 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴))
486recnd 11286 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℂ)
4948sqsqrtd 15474 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
5048mulridd 11275 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) = 𝐴)
5149, 50eqtr4d 2777 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = (𝐴 · 1))
5248sqvald 14179 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
5347, 51, 523brtr4d 5179 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) ≤ (𝐴↑2))
546, 14sqrtge0d 15455 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (√‘𝐴))
5515, 6, 54, 14le2sqd 14292 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) ≤ 𝐴 ↔ ((√‘𝐴)↑2) ≤ (𝐴↑2)))
5653, 55mpbird 257 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ≤ 𝐴)
57 iccss 13451 . . . . . . . 8 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
587, 6, 46, 56, 57syl22anc 839 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
5958ssrind 4251 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6059sselda 3994 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6141, 30resubcld 11688 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
6261recnd 11286 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
6360, 62syldan 591 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
64 eldifi 4140 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6564, 43sylan2 593 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℂ)
6665mullidd 11276 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝))
6725elin1d 4213 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
68 0re 11260 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
696adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
70 elicc2 13448 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7168, 69, 70sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7267, 71mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
7372simp3d 1143 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
7464, 73sylan2 593 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝𝐴)
7564, 29sylan2 593 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ+)
7613adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ+)
7775, 76logled 26683 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
7874, 77mpbid 232 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴))
7966, 78eqbrtrd 5169 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
80 1red 11259 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ∈ ℝ)
8121adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) ∈ ℝ)
8264, 37sylan2 593 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℝ+)
8380, 81, 82lemuldivd 13123 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
8479, 83mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
856adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ)
8685recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℂ)
8786sqsqrtd 15474 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴)
88 eldifn 4141 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9064, 26sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℙ)
91 elin 3978 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ (𝑝 ∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ))
9291rbaib 538 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
94 0red 11261 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ∈ ℝ)
9515adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) ∈ ℝ)
9664, 28sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℕ)
9796nnred 12278 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ)
9875rpge0d 13078 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ 𝑝)
99 elicc2 13448 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴))))
100 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))
10199, 100bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))))
102101baibd 539 . . . . . . . . . . . . . . . . . . . . 21 (((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10394, 95, 97, 98, 102syl22anc 839 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10493, 103bitrd 279 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴)))
10589, 104mtbid 324 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴))
10695, 97ltnled 11405 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴)))
107105, 106mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) < 𝑝)
10854adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ (√‘𝐴))
10995, 97, 108, 98lt2sqd 14291 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2)))
110107, 109mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2))
11187, 110eqbrtrrd 5171 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 < (𝑝↑2))
11296nnsqcld 14279 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℕ)
113112nnrpd 13072 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℝ+)
114 logltb 26656 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+ ∧ (𝑝↑2) ∈ ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
11576, 113, 114syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
116111, 115mpbid 232 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2)))
117 2z 12646 . . . . . . . . . . . . . . 15 2 ∈ ℤ
118 relogexp 26652 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
11975, 117, 118sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
120116, 119breqtrd 5173 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝)))
121 2re 12337 . . . . . . . . . . . . . . 15 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 2 ∈ ℝ)
12381, 122, 82ltdivmul2d 13126 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝))))
124120, 123mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2)
125 df-2 12326 . . . . . . . . . . . 12 2 = (1 + 1)
126124, 125breqtrdi 5188 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1))
12764, 38sylan2 593 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
128 1z 12644 . . . . . . . . . . . 12 1 ∈ ℤ
129 flbi 13852 . . . . . . . . . . . 12 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
130127, 128, 129sylancl 586 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
13184, 126, 130mpbir2and 713 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1)
132131oveq2d 7446 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1))
13365mulridd 11275 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝))
134132, 133eqtrd 2774 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝))
135134oveq1d 7445 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝)))
13665subidd 11605 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0)
137135, 136eqtrd 2774 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0)
13859, 63, 137, 24fsumss 15757 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
139 chpval2 27276 . . . . . . 7 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
140139adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
141 chtval 27167 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
142141adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
143140, 142oveq12d 7448 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
14444, 138, 1433eqtr4rd 2785 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
14560, 61syldan 591 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
14660, 41syldan 591 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
14760, 37syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
148147rpge0d 13078 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
149 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
150149elin2d 4214 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℙ)
151150, 27syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℕ)
152151nnrpd 13072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
153152relogcld 26679 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
154146, 153subge02d 11852 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0 ≤ (log‘𝑝) ↔ (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))))
155148, 154mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
15660, 38syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
157 flle 13835 . . . . . . . 8 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
158156, 157syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
15960, 40syldan 591 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
160159, 19, 147lemuldiv2d 13124 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))))
161158, 160mpbird 257 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴))
162145, 146, 19, 155, 161letrd 11415 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴))
16317, 145, 19, 162fsumle 15831 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
164144, 163eqbrtrd 5169 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
16521recnd 11286 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℂ)
166 fsumconst 15822 . . . . 5 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
16717, 165, 166syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
168 hashcl 14391 . . . . . . 7 (((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
16917, 168syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
170169nn0red 12585 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℝ)
171 logge0 26661 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
172 reflcl 13832 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ)
17315, 172syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℝ)
174 fzfid 14010 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘(√‘𝐴))) ∈ Fin)
175 ppisval 27161 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
17615, 175syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
177 inss1 4244 . . . . . . . . . . 11 ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (2...(⌊‘(√‘𝐴)))
178 2eluzge1 12933 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
179 fzss1 13599 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
180178, 179mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
181177, 180sstrid 4006 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
182176, 181eqsstrd 4033 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
183 ssdomg 9038 . . . . . . . . 9 ((1...(⌊‘(√‘𝐴))) ∈ Fin → (((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
184174, 182, 183sylc 65 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴))))
185 hashdom 14414 . . . . . . . . 9 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘(√‘𝐴))) ∈ Fin) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
18617, 174, 185syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
187184, 186mpbird 257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))))
188 flge0nn0 13856 . . . . . . . . 9 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (⌊‘(√‘𝐴)) ∈ ℕ0)
18915, 54, 188syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℕ0)
190 hashfz1 14381 . . . . . . . 8 ((⌊‘(√‘𝐴)) ∈ ℕ0 → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
191189, 190syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
192187, 191breqtrd 5173 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (⌊‘(√‘𝐴)))
193 flle 13835 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
19415, 193syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
195170, 173, 15, 192, 194letrd 11415 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴))
196170, 15, 21, 171, 195lemul1ad 12204 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
197167, 196eqbrtrd 5169 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ≤ ((√‘𝐴) · (log‘𝐴)))
1985, 20, 22, 164, 197letrd 11415 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
1992, 4, 22lesubadd2d 11859 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)) ↔ (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴)))))
200198, 199mpbid 232 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cdif 3959  cin 3961  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cdom 8981  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  +crp 13031  [,]cicc 13386  ...cfz 13543  cfl 13826  cexp 14098  chash 14365  csqrt 15268  Σcsu 15718  cprime 16704  logclog 26610  θccht 27148  ψcchp 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cht 27154  df-vma 27155  df-chp 27156
This theorem is referenced by:  chpchtlim  27537
  Copyright terms: Public domain W3C validator