Step | Hyp | Ref
| Expression |
1 | | chpcl 26273 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
(ψ‘𝐴) ∈
ℝ) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(ψ‘𝐴) ∈
ℝ) |
3 | | chtcl 26258 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
(θ‘𝐴) ∈
ℝ) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(θ‘𝐴) ∈
ℝ) |
5 | 2, 4 | resubcld 11403 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((ψ‘𝐴) −
(θ‘𝐴)) ∈
ℝ) |
6 | | simpl 483 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 𝐴 ∈ ℝ) |
7 | | 0red 10978 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 ∈
ℝ) |
8 | | 1red 10976 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 1 ∈
ℝ) |
9 | | 0lt1 11497 |
. . . . . . . . . 10
⊢ 0 <
1 |
10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 <
1) |
11 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 1 ≤ 𝐴) |
12 | 7, 8, 6, 10, 11 | ltletrd 11135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 < 𝐴) |
13 | 6, 12 | elrpd 12769 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 𝐴 ∈
ℝ+) |
14 | 13 | rpge0d 12776 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 ≤ 𝐴) |
15 | 6, 14 | resqrtcld 15129 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(√‘𝐴) ∈
ℝ) |
16 | | ppifi 26255 |
. . . . 5
⊢
((√‘𝐴)
∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈
Fin) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((0[,](√‘𝐴))
∩ ℙ) ∈ Fin) |
18 | 13 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈
ℝ+) |
19 | 18 | relogcld 25778 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(log‘𝐴) ∈
ℝ) |
20 | 17, 19 | fsumrecl 15446 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(log‘𝐴)
∈ ℝ) |
21 | 13 | relogcld 25778 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → (log‘𝐴) ∈
ℝ) |
22 | 15, 21 | remulcld 11005 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((√‘𝐴) ·
(log‘𝐴)) ∈
ℝ) |
23 | | ppifi 26255 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
((0[,]𝐴) ∩ ℙ)
∈ Fin) |
24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → ((0[,]𝐴) ∩ ℙ) ∈
Fin) |
25 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) |
26 | 25 | elin2d 4133 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
27 | | prmnn 16379 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
29 | 28 | nnrpd 12770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
30 | 29 | relogcld 25778 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ) |
31 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈
ℝ) |
32 | 28 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ) |
33 | | prmuz2 16401 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
34 | 26, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈
(ℤ≥‘2)) |
35 | | eluz2gt1 12660 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝) |
37 | 32, 36 | rplogcld 25784 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ+) |
38 | 31, 37 | rerpdivcld 12803 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈
ℝ) |
39 | | reflcl 13516 |
. . . . . . . . 9
⊢
(((log‘𝐴) /
(log‘𝑝)) ∈
ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ) |
40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ) |
41 | 30, 40 | remulcld 11005 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ) |
42 | 41 | recnd 11003 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ) |
43 | 30 | recnd 11003 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
44 | 24, 42, 43 | fsumsub 15500 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))) |
45 | | 0le0 12074 |
. . . . . . . . 9
⊢ 0 ≤
0 |
46 | 45 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 ≤
0) |
47 | 8, 6, 6, 14, 11 | lemul2ad 11915 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴)) |
48 | 6 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 𝐴 ∈ ℂ) |
49 | 48 | sqsqrtd 15151 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((√‘𝐴)↑2)
= 𝐴) |
50 | 48 | mulid1d 10992 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → (𝐴 · 1) = 𝐴) |
51 | 49, 50 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((√‘𝐴)↑2)
= (𝐴 ·
1)) |
52 | 48 | sqvald 13861 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → (𝐴↑2) = (𝐴 · 𝐴)) |
53 | 47, 51, 52 | 3brtr4d 5106 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((√‘𝐴)↑2)
≤ (𝐴↑2)) |
54 | 6, 14 | sqrtge0d 15132 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 ≤
(√‘𝐴)) |
55 | 15, 6, 54, 14 | le2sqd 13974 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((√‘𝐴) ≤
𝐴 ↔
((√‘𝐴)↑2)
≤ (𝐴↑2))) |
56 | 53, 55 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(√‘𝐴) ≤
𝐴) |
57 | | iccss 13147 |
. . . . . . . 8
⊢ (((0
∈ ℝ ∧ 𝐴
∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴)) |
58 | 7, 6, 46, 56, 57 | syl22anc 836 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(0[,](√‘𝐴))
⊆ (0[,]𝐴)) |
59 | 58 | ssrind 4169 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((0[,](√‘𝐴))
∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ)) |
60 | 59 | sselda 3921 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) |
61 | 41, 30 | resubcld 11403 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ) |
62 | 61 | recnd 11003 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ) |
63 | 60, 62 | syldan 591 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ) |
64 | | eldifi 4061 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ)) → 𝑝
∈ ((0[,]𝐴) ∩
ℙ)) |
65 | 64, 43 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝑝) ∈ ℂ) |
66 | 65 | mulid2d 10993 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝)) |
67 | 25 | elin1d 4132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴)) |
68 | | 0re 10977 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
69 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) |
70 | | elicc2 13144 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑝
∈ (0[,]𝐴) ↔
(𝑝 ∈ ℝ ∧ 0
≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
71 | 68, 69, 70 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
72 | 67, 71 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
73 | 72 | simp3d 1143 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ 𝐴) |
74 | 64, 73 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝑝
≤ 𝐴) |
75 | 64, 29 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝑝
∈ ℝ+) |
76 | 13 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝐴
∈ ℝ+) |
77 | 75, 76 | logled 25782 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝
≤ 𝐴 ↔
(log‘𝑝) ≤
(log‘𝐴))) |
78 | 74, 77 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴)) |
79 | 66, 78 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴)) |
80 | | 1red 10976 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 1 ∈ ℝ) |
81 | 21 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝐴) ∈ ℝ) |
82 | 64, 37 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝑝) ∈
ℝ+) |
83 | 80, 81, 82 | lemuldivd 12821 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝)))) |
84 | 79, 83 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝))) |
85 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝐴
∈ ℝ) |
86 | 85 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝐴
∈ ℂ) |
87 | 86 | sqsqrtd 15151 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴) |
88 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩
ℙ)) |
89 | 88 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩
ℙ)) |
90 | 64, 26 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝑝
∈ ℙ) |
91 | | elin 3903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ) ↔ (𝑝
∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ)) |
92 | 91 | rbaib 539 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ℙ → (𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ) ↔ 𝑝
∈ (0[,](√‘𝐴)))) |
93 | 90, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝
∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴)))) |
94 | | 0red 10978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 0 ∈ ℝ) |
95 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (√‘𝐴) ∈ ℝ) |
96 | 64, 28 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝑝
∈ ℕ) |
97 | 96 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝑝
∈ ℝ) |
98 | 75 | rpge0d 12776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 0 ≤ 𝑝) |
99 | | elicc2 13144 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ (√‘𝐴)))) |
100 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ∈ ℝ ∧ 0 ≤
𝑝 ∧ 𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))) |
101 | 99, 100 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((0
∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))) |
102 | 101 | baibd 540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((0
∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴))) |
103 | 94, 95, 97, 98, 102 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝
∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴))) |
104 | 93, 103 | bitrd 278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝
∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴))) |
105 | 89, 104 | mtbid 324 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴)) |
106 | 95, 97 | ltnled 11122 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴))) |
107 | 105, 106 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (√‘𝐴) < 𝑝) |
108 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 0 ≤ (√‘𝐴)) |
109 | 95, 97, 108, 98 | lt2sqd 13973 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2))) |
110 | 107, 109 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2)) |
111 | 87, 110 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 𝐴
< (𝑝↑2)) |
112 | 96 | nnsqcld 13959 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝↑2) ∈ ℕ) |
113 | 112 | nnrpd 12770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝑝↑2) ∈
ℝ+) |
114 | | logltb 25755 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ+
∧ (𝑝↑2) ∈
ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2)))) |
115 | 76, 113, 114 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (𝐴
< (𝑝↑2) ↔
(log‘𝐴) <
(log‘(𝑝↑2)))) |
116 | 111, 115 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2))) |
117 | | 2z 12352 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
118 | | relogexp 25751 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℝ+
∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝))) |
119 | 75, 117, 118 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝))) |
120 | 116, 119 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝))) |
121 | | 2re 12047 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
122 | 121 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → 2 ∈ ℝ) |
123 | 81, 122, 82 | ltdivmul2d 12824 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝)))) |
124 | 120, 123 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2) |
125 | | df-2 12036 |
. . . . . . . . . . . 12
⊢ 2 = (1 +
1) |
126 | 124, 125 | breqtrdi 5115 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1)) |
127 | 64, 38 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ) |
128 | | 1z 12350 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
129 | | flbi 13536 |
. . . . . . . . . . . 12
⊢
((((log‘𝐴) /
(log‘𝑝)) ∈
ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤
((log‘𝐴) /
(log‘𝑝)) ∧
((log‘𝐴) /
(log‘𝑝)) < (1 +
1)))) |
130 | 127, 128,
129 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 +
1)))) |
131 | 84, 126, 130 | mpbir2and 710 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1) |
132 | 131 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1)) |
133 | 65 | mulid1d 10992 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝)) |
134 | 132, 133 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝)) |
135 | 134 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝))) |
136 | 65 | subidd 11320 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0) |
137 | 135, 136 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖
((0[,](√‘𝐴))
∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0) |
138 | 59, 63, 137, 24 | fsumss 15437 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝))) |
139 | | chpval2 26366 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(ψ‘𝐴) =
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝)
· (⌊‘((log‘𝐴) / (log‘𝑝))))) |
140 | 139 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(ψ‘𝐴) =
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝)
· (⌊‘((log‘𝐴) / (log‘𝑝))))) |
141 | | chtval 26259 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(θ‘𝐴) =
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
142 | 141 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(θ‘𝐴) =
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
143 | 140, 142 | oveq12d 7293 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((ψ‘𝐴) −
(θ‘𝐴)) =
(Σ𝑝 ∈
((0[,]𝐴) ∩
ℙ)((log‘𝑝)
· (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))) |
144 | 44, 138, 143 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((ψ‘𝐴) −
(θ‘𝐴)) =
Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝))) |
145 | 60, 61 | syldan 591 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ) |
146 | 60, 41 | syldan 591 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ) |
147 | 60, 37 | syldan 591 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(log‘𝑝) ∈
ℝ+) |
148 | 147 | rpge0d 12776 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤
(log‘𝑝)) |
149 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)) |
150 | 149 | elin2d 4133 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈
ℙ) |
151 | 150, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈
ℕ) |
152 | 151 | nnrpd 12770 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈
ℝ+) |
153 | 152 | relogcld 25778 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(log‘𝑝) ∈
ℝ) |
154 | 146, 153 | subge02d 11567 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0
≤ (log‘𝑝) ↔
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))) |
155 | 148, 154 | mpbid 231 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))) |
156 | 60, 38 | syldan 591 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
((log‘𝐴) /
(log‘𝑝)) ∈
ℝ) |
157 | | flle 13519 |
. . . . . . . 8
⊢
(((log‘𝐴) /
(log‘𝑝)) ∈
ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))) |
158 | 156, 157 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))) |
159 | 60, 40 | syldan 591 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ) |
160 | 159, 19, 147 | lemuldiv2d 12822 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))) |
161 | 158, 160 | mpbird 256 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴)) |
162 | 145, 146,
19, 155, 161 | letrd 11132 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) →
(((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴)) |
163 | 17, 145, 19, 162 | fsumle 15511 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(log‘𝐴)) |
164 | 144, 163 | eqbrtrd 5096 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((ψ‘𝐴) −
(θ‘𝐴)) ≤
Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(log‘𝐴)) |
165 | 21 | recnd 11003 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → (log‘𝐴) ∈
ℂ) |
166 | | fsumconst 15502 |
. . . . 5
⊢
((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧
(log‘𝐴) ∈
ℂ) → Σ𝑝
∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) =
((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴))) |
167 | 17, 165, 166 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(log‘𝐴)
= ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴))) |
168 | | hashcl 14071 |
. . . . . . 7
⊢
(((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈
ℕ0) |
169 | 17, 168 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈
ℕ0) |
170 | 169 | nn0red 12294 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈
ℝ) |
171 | | logge0 25760 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → 0 ≤
(log‘𝐴)) |
172 | | reflcl 13516 |
. . . . . . 7
⊢
((√‘𝐴)
∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ) |
173 | 15, 172 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(⌊‘(√‘𝐴)) ∈ ℝ) |
174 | | fzfid 13693 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(1...(⌊‘(√‘𝐴))) ∈ Fin) |
175 | | ppisval 26253 |
. . . . . . . . . . 11
⊢
((√‘𝐴)
∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) =
((2...(⌊‘(√‘𝐴))) ∩ ℙ)) |
176 | 15, 175 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((0[,](√‘𝐴))
∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ)) |
177 | | inss1 4162 |
. . . . . . . . . . 11
⊢
((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆
(2...(⌊‘(√‘𝐴))) |
178 | | 2eluzge1 12634 |
. . . . . . . . . . . 12
⊢ 2 ∈
(ℤ≥‘1) |
179 | | fzss1 13295 |
. . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) →
(2...(⌊‘(√‘𝐴))) ⊆
(1...(⌊‘(√‘𝐴)))) |
180 | 178, 179 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(2...(⌊‘(√‘𝐴))) ⊆
(1...(⌊‘(√‘𝐴)))) |
181 | 177, 180 | sstrid 3932 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆
(1...(⌊‘(√‘𝐴)))) |
182 | 176, 181 | eqsstrd 3959 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((0[,](√‘𝐴))
∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴)))) |
183 | | ssdomg 8786 |
. . . . . . . . 9
⊢
((1...(⌊‘(√‘𝐴))) ∈ Fin →
(((0[,](√‘𝐴))
∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼
(1...(⌊‘(√‘𝐴))))) |
184 | 174, 182,
183 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((0[,](√‘𝐴))
∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))) |
185 | | hashdom 14094 |
. . . . . . . . 9
⊢
((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧
(1...(⌊‘(√‘𝐴))) ∈ Fin) →
((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤
(♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼
(1...(⌊‘(√‘𝐴))))) |
186 | 17, 174, 185 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤
(♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼
(1...(⌊‘(√‘𝐴))))) |
187 | 184, 186 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤
(♯‘(1...(⌊‘(√‘𝐴))))) |
188 | | flge0nn0 13540 |
. . . . . . . . 9
⊢
(((√‘𝐴)
∈ ℝ ∧ 0 ≤ (√‘𝐴)) →
(⌊‘(√‘𝐴)) ∈
ℕ0) |
189 | 15, 54, 188 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(⌊‘(√‘𝐴)) ∈
ℕ0) |
190 | | hashfz1 14060 |
. . . . . . . 8
⊢
((⌊‘(√‘𝐴)) ∈ ℕ0 →
(♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴))) |
191 | 189, 190 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴))) |
192 | 187, 191 | breqtrd 5100 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤
(⌊‘(√‘𝐴))) |
193 | | flle 13519 |
. . . . . . 7
⊢
((√‘𝐴)
∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴)) |
194 | 15, 193 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(⌊‘(√‘𝐴)) ≤ (√‘𝐴)) |
195 | 170, 173,
15, 192, 194 | letrd 11132 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴)) |
196 | 170, 15, 21, 171, 195 | lemul1ad 11914 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴))) |
197 | 167, 196 | eqbrtrd 5096 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑝 ∈
((0[,](√‘𝐴))
∩ ℙ)(log‘𝐴)
≤ ((√‘𝐴)
· (log‘𝐴))) |
198 | 5, 20, 22, 164, 197 | letrd 11132 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
((ψ‘𝐴) −
(θ‘𝐴)) ≤
((√‘𝐴) ·
(log‘𝐴))) |
199 | 2, 4, 22 | lesubadd2d 11574 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(((ψ‘𝐴) −
(θ‘𝐴)) ≤
((√‘𝐴) ·
(log‘𝐴)) ↔
(ψ‘𝐴) ≤
((θ‘𝐴) +
((√‘𝐴) ·
(log‘𝐴))))) |
200 | 198, 199 | mpbid 231 |
1
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) →
(ψ‘𝐴) ≤
((θ‘𝐴) +
((√‘𝐴) ·
(log‘𝐴)))) |