![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsxms | Structured version Visualization version GIF version |
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsxms | ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.x | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
2 | setsms.d | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
3 | setsms.k | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)) | |
4 | setsms.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | setsmstopn 24207 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
6 | 1, 2, 3 | setsmsds 24204 | . . . . . . 7 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
7 | 1, 2, 3 | setsmsbas 24202 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
8 | 7 | sqxpeqd 5708 | . . . . . . 7 ⊢ (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾))) |
9 | 6, 8 | reseq12d 5982 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
10 | 2, 9 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
11 | 10 | fveq2d 6895 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
12 | 5, 11 | eqtr3d 2773 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
13 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
14 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
15 | eqid 2731 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
16 | 13, 14, 15 | isxms2 24175 | . . . 4 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
17 | 16 | rbaib 538 | . . 3 ⊢ ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
19 | 7 | fveq2d 6895 | . . 3 ⊢ (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
20 | 10, 19 | eleq12d 2826 | . 2 ⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
21 | 18, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 sSet csts 17101 ndxcnx 17131 Basecbs 17149 TopSetcts 17208 distcds 17211 TopOpenctopn 17372 ∞Metcxmet 21130 MetOpencmopn 21135 ∞MetSpcxms 24044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-tset 17221 df-ds 17224 df-rest 17373 df-topn 17374 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-xms 24047 |
This theorem is referenced by: setsms 24209 |
Copyright terms: Public domain | W3C validator |