| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsxms | Structured version Visualization version GIF version | ||
| Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| setsxms | ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 2 | setsms.d | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 3 | setsms.k | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 4 | setsms.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | setsmstopn 24364 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| 6 | 1, 2, 3 | setsmsds 24362 | . . . . . . 7 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
| 7 | 1, 2, 3 | setsmsbas 24361 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| 8 | 7 | sqxpeqd 5651 | . . . . . . 7 ⊢ (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾))) |
| 9 | 6, 8 | reseq12d 5931 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 10 | 2, 9 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 11 | 10 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
| 12 | 5, 11 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
| 13 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 15 | eqid 2729 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 16 | 13, 14, 15 | isxms2 24334 | . . . 4 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
| 17 | 16 | rbaib 538 | . . 3 ⊢ ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
| 18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
| 19 | 7 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
| 20 | 10, 19 | eleq12d 2822 | . 2 ⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
| 21 | 18, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 sSet csts 17074 ndxcnx 17104 Basecbs 17120 TopSetcts 17167 distcds 17170 TopOpenctopn 17325 ∞Metcxmet 21246 MetOpencmopn 21251 ∞MetSpcxms 24203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 |
| This theorem is referenced by: setsms 24366 |
| Copyright terms: Public domain | W3C validator |