| Step | Hyp | Ref
| Expression |
| 1 | | elfzelz 13565 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) |
| 2 | 1 | zred 12724 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 3 | | eluzel2 12884 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝐾 ∈ ℤ) |
| 4 | 3 | adantl 481 |
. . . . . . 7
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℤ) |
| 5 | 4 | zred 12724 |
. . . . . 6
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℝ) |
| 6 | | lelttric 11369 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥)) |
| 7 | 2, 5, 6 | syl2anr 597 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥)) |
| 8 | | elfzuz 13561 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 9 | | elfz5 13557 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥 ≤ 𝐾)) |
| 10 | 8, 4, 9 | syl2anr 597 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥 ≤ 𝐾)) |
| 11 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈
(ℤ≥‘𝑀)) |
| 12 | | eluzelz 12889 |
. . . . . . . . 9
⊢ ((𝐾 + 1) ∈
(ℤ≥‘𝑀) → (𝐾 + 1) ∈ ℤ) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℤ) |
| 14 | | eluz 12893 |
. . . . . . . 8
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈
(ℤ≥‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥)) |
| 15 | 13, 1, 14 | syl2an 596 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ≥‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥)) |
| 16 | | elfzuz3 13562 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 17 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 18 | | elfzuzb 13559 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘𝑥))) |
| 19 | 18 | rbaib 538 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) |
| 20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) |
| 21 | | zltp1le 12669 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥)) |
| 22 | 4, 1, 21 | syl2an 596 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥)) |
| 23 | 15, 20, 22 | 3bitr4d 311 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥)) |
| 24 | 10, 23 | orbi12d 918 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥))) |
| 25 | 7, 24 | mpbird 257 |
. . . 4
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) |
| 26 | | elfzuz 13561 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 27 | 26 | adantl 481 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 29 | | elfzuz3 13562 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑥)) |
| 30 | | uztrn 12897 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑥)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 31 | 28, 29, 30 | syl2an 596 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 32 | | elfzuzb 13559 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑥))) |
| 33 | 27, 31, 32 | sylanbrc 583 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁)) |
| 34 | | elfzuz 13561 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) |
| 35 | | uztrn 12897 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈
(ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 36 | 34, 11, 35 | syl2anr 597 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 37 | | elfzuz3 13562 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 38 | 37 | adantl 481 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 39 | 36, 38, 32 | sylanbrc 583 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 40 | 33, 39 | jaodan 959 |
. . . 4
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁)) |
| 41 | 25, 40 | impbida 800 |
. . 3
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))) |
| 42 | | elun 4152 |
. . 3
⊢ (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) |
| 43 | 41, 42 | bitr4di 289 |
. 2
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))) |
| 44 | 43 | eqrdv 2734 |
1
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) |