MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzsplit2 Structured version   Visualization version   GIF version

Theorem fzsplit2 13281
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))

Proof of Theorem fzsplit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13256 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
21zred 12426 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
3 eluzel2 12587 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
43adantl 482 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
54zred 12426 . . . . . 6 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
6 lelttric 11082 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥𝐾𝐾 < 𝑥))
72, 5, 6syl2anr 597 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥𝐾𝐾 < 𝑥))
8 elfzuz 13252 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
9 elfz5 13248 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
108, 4, 9syl2anr 597 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
11 simpl 483 . . . . . . . . 9 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ (ℤ𝑀))
12 eluzelz 12592 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℤ𝑀) → (𝐾 + 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . 8 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
14 eluz 12596 . . . . . . . 8 (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
1513, 1, 14syl2an 596 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
16 elfzuz3 13253 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1716adantl 482 . . . . . . . 8 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
18 elfzuzb 13250 . . . . . . . . 9 (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ𝑥)))
1918rbaib 539 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
2017, 19syl 17 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
21 zltp1le 12370 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
224, 1, 21syl2an 596 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
2315, 20, 223bitr4d 311 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥))
2410, 23orbi12d 916 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥𝐾𝐾 < 𝑥)))
257, 24mpbird 256 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
26 elfzuz 13252 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ𝑀))
2726adantl 482 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ𝑀))
28 simpr 485 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
29 elfzuz3 13253 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ𝑥))
30 uztrn 12600 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
3128, 29, 30syl2an 596 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ𝑥))
32 elfzuzb 13250 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
3327, 31, 32sylanbrc 583 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁))
34 elfzuz 13252 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
35 uztrn 12600 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3634, 11, 35syl2anr 597 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ𝑀))
37 elfzuz3 13253 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑥))
3837adantl 482 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝑥))
3936, 38, 32sylanbrc 583 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
4033, 39jaodan 955 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
4125, 40impbida 798 . . 3 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))))
42 elun 4083 . . 3 (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
4341, 42bitr4di 289 . 2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))))
4443eqrdv 2736 1 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  cun 3885   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cz 12319  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fzsplit  13282  fzpred  13304  fz0to4untppr  13359  fallfacval4  15753  fsumharmonic  26161  gausslemma2dlem6  26520  dchrisum0lem1b  26663  dchrisum0lem1  26664  dchrisum0lem3  26667  pntrsumbnd2  26715  pntrlog2bndlem6a  26730  pntlemf  26753  fzspl  31111  poimirlem1  35778  poimirlem2  35779  poimirlem3  35780  poimirlem4  35781  poimirlem6  35783  poimirlem7  35784  poimirlem8  35785  poimirlem12  35789  poimirlem13  35790  poimirlem14  35791  poimirlem16  35793  poimirlem17  35794  poimirlem18  35795  poimirlem19  35796  poimirlem20  35797  poimirlem21  35798  poimirlem22  35799  poimirlem23  35800  poimirlem24  35801  poimirlem25  35802  poimirlem26  35803  poimirlem28  35805  poimirlem29  35806  poimirlem31  35808  poimirlem32  35809  fzsplitnd  39991
  Copyright terms: Public domain W3C validator