Proof of Theorem fsumvma2
Step | Hyp | Ref
| Expression |
1 | | fsumvma2.1 |
. 2
⊢ (𝑥 = (𝑝↑𝑘) → 𝐵 = 𝐶) |
2 | | fzfid 13621 |
. 2
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
3 | | fz1ssnn 13216 |
. . 3
⊢
(1...(⌊‘𝐴)) ⊆ ℕ |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (1...(⌊‘𝐴)) ⊆
ℕ) |
5 | | fsumvma2.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
6 | | ppifi 26160 |
. . 3
⊢ (𝐴 ∈ ℝ →
((0[,]𝐴) ∩ ℙ)
∈ Fin) |
7 | 5, 6 | syl 17 |
. 2
⊢ (𝜑 → ((0[,]𝐴) ∩ ℙ) ∈
Fin) |
8 | | elinel2 4126 |
. . . . 5
⊢ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ) |
9 | | elfznn 13214 |
. . . . 5
⊢ (𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ) |
10 | 8, 9 | anim12i 612 |
. . . 4
⊢ ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) |
11 | 10 | pm4.71ri 560 |
. . 3
⊢ ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))) |
12 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝐴 ∈ ℝ) |
13 | | prmnn 16307 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
14 | 13 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ) |
15 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
16 | 15 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ0) |
17 | 14, 16 | nnexpcld 13888 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑𝑘) ∈ ℕ) |
18 | 17 | nnzd 12354 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑𝑘) ∈ ℤ) |
19 | | flge 13453 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝑝↑𝑘) ∈ ℤ) → ((𝑝↑𝑘) ≤ 𝐴 ↔ (𝑝↑𝑘) ≤ (⌊‘𝐴))) |
20 | 12, 18, 19 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝↑𝑘) ≤ 𝐴 ↔ (𝑝↑𝑘) ≤ (⌊‘𝐴))) |
21 | | simplrl 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℙ) |
22 | 21, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℕ) |
23 | 22 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ+) |
24 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℕ) |
25 | 24 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℤ) |
26 | | relogexp 25656 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℝ+
∧ 𝑘 ∈ ℤ)
→ (log‘(𝑝↑𝑘)) = (𝑘 · (log‘𝑝))) |
27 | 23, 25, 26 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘(𝑝↑𝑘)) = (𝑘 · (log‘𝑝))) |
28 | 27 | breq1d 5080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝↑𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴))) |
29 | 24 | nnred 11918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℝ) |
30 | 12 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ) |
31 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 ∈ ℝ) |
32 | 14 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℝ) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ) |
34 | 22 | nngt0d 11952 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝑝) |
35 | | 0red 10909 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ∈
ℝ) |
36 | 14 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ0) |
37 | 36 | nn0ge0d 12226 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ≤ 𝑝) |
38 | | elicc2 13073 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑝
∈ (0[,]𝐴) ↔
(𝑝 ∈ ℝ ∧ 0
≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
39 | | df-3an 1087 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ ℝ ∧ 0 ≤
𝑝 ∧ 𝑝 ≤ 𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ 𝐴)) |
40 | 38, 39 | bitrdi 286 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑝
∈ (0[,]𝐴) ↔
((𝑝 ∈ ℝ ∧ 0
≤ 𝑝) ∧ 𝑝 ≤ 𝐴))) |
41 | 40 | baibd 539 |
. . . . . . . . . . . . . . 15
⊢ (((0
∈ ℝ ∧ 𝐴
∈ ℝ) ∧ (𝑝
∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝 ≤ 𝐴)) |
42 | 35, 12, 32, 37, 41 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝 ≤ 𝐴)) |
43 | 42 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ≤ 𝐴) |
44 | 31, 33, 30, 34, 43 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝐴) |
45 | 30, 44 | elrpd 12698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈
ℝ+) |
46 | 45 | relogcld 25683 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝐴) ∈ ℝ) |
47 | | prmuz2 16329 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
48 | | eluzelre 12522 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
(ℤ≥‘2) → 𝑝 ∈ ℝ) |
49 | | eluz2gt1 12589 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
50 | 48, 49 | rplogcld 25689 |
. . . . . . . . . . 11
⊢ (𝑝 ∈
(ℤ≥‘2) → (log‘𝑝) ∈
ℝ+) |
51 | 21, 47, 50 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝑝) ∈
ℝ+) |
52 | 29, 46, 51 | lemuldivd 12750 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝)))) |
53 | 46, 51 | rerpdivcld 12732 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ) |
54 | | flge 13453 |
. . . . . . . . . 10
⊢
((((log‘𝐴) /
(log‘𝑝)) ∈
ℝ ∧ 𝑘 ∈
ℤ) → (𝑘 ≤
((log‘𝐴) /
(log‘𝑝)) ↔ 𝑘 ≤
(⌊‘((log‘𝐴) / (log‘𝑝))))) |
55 | 53, 25, 54 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝))))) |
56 | 28, 52, 55 | 3bitrd 304 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝↑𝑘)) ≤ (log‘𝐴) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝))))) |
57 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝↑𝑘) ∈ ℕ) |
58 | 57 | nnrpd 12699 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝↑𝑘) ∈
ℝ+) |
59 | 58, 45 | logled 25687 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝↑𝑘) ≤ 𝐴 ↔ (log‘(𝑝↑𝑘)) ≤ (log‘𝐴))) |
60 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ) |
61 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
62 | 60, 61 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈
(ℤ≥‘1)) |
63 | 62 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈
(ℤ≥‘1)) |
64 | 53 | flcld 13446 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈
ℤ) |
65 | | elfz5 13177 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) →
(𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝))))) |
66 | 63, 64, 65 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝))))) |
67 | 56, 59, 66 | 3bitr4d 310 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝↑𝑘) ≤ 𝐴 ↔ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) |
68 | 67 | pm5.32da 578 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ (0[,]𝐴) ∧ (𝑝↑𝑘) ≤ 𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))) |
69 | 14 | nncnd 11919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℂ) |
70 | 69 | exp1d 13787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) = 𝑝) |
71 | 14 | nnge1d 11951 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 1 ≤ 𝑝) |
72 | 32, 71, 62 | leexp2ad 13899 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) ≤ (𝑝↑𝑘)) |
73 | 70, 72 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ≤ (𝑝↑𝑘)) |
74 | 17 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑𝑘) ∈ ℝ) |
75 | | letr 10999 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℝ ∧ (𝑝↑𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝↑𝑘) ∧ (𝑝↑𝑘) ≤ 𝐴) → 𝑝 ≤ 𝐴)) |
76 | 32, 74, 12, 75 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ≤ (𝑝↑𝑘) ∧ (𝑝↑𝑘) ≤ 𝐴) → 𝑝 ≤ 𝐴)) |
77 | 73, 76 | mpand 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝↑𝑘) ≤ 𝐴 → 𝑝 ≤ 𝐴)) |
78 | 77, 42 | sylibrd 258 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝↑𝑘) ≤ 𝐴 → 𝑝 ∈ (0[,]𝐴))) |
79 | 78 | pm4.71rd 562 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝↑𝑘) ≤ 𝐴 ↔ (𝑝 ∈ (0[,]𝐴) ∧ (𝑝↑𝑘) ≤ 𝐴))) |
80 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ)) |
81 | 80 | rbaib 538 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴))) |
82 | 81 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴))) |
83 | 82 | anbi1d 629 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))) |
84 | 68, 79, 83 | 3bitr4rd 311 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝↑𝑘) ≤ 𝐴)) |
85 | 17, 61 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑𝑘) ∈
(ℤ≥‘1)) |
86 | 12 | flcld 13446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (⌊‘𝐴) ∈
ℤ) |
87 | | elfz5 13177 |
. . . . . 6
⊢ (((𝑝↑𝑘) ∈ (ℤ≥‘1)
∧ (⌊‘𝐴)
∈ ℤ) → ((𝑝↑𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝↑𝑘) ≤ (⌊‘𝐴))) |
88 | 85, 86, 87 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝↑𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝↑𝑘) ≤ (⌊‘𝐴))) |
89 | 20, 84, 88 | 3bitr4d 310 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝↑𝑘) ∈ (1...(⌊‘𝐴)))) |
90 | 89 | pm5.32da 578 |
. . 3
⊢ (𝜑 → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ (1...(⌊‘𝐴))))) |
91 | 11, 90 | syl5bb 282 |
. 2
⊢ (𝜑 → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ (1...(⌊‘𝐴))))) |
92 | | fsumvma2.3 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) |
93 | | fsumvma2.4 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0) |
94 | 1, 2, 4, 7, 91, 92, 93 | fsumvma 26266 |
1
⊢ (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶) |