MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma2 Structured version   Visualization version   GIF version

Theorem fsumvma2 27158
Description: Apply fsumvma 27157 for the common case of all numbers less than a real number 𝐴. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
fsumvma2.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma2.2 (𝜑𝐴 ∈ ℝ)
fsumvma2.3 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
fsumvma2.4 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma2 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)

Proof of Theorem fsumvma2
StepHypRef Expression
1 fsumvma2.1 . 2 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
2 fzfid 13914 . 2 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
3 fz1ssnn 13492 . . 3 (1...(⌊‘𝐴)) ⊆ ℕ
43a1i 11 . 2 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
5 fsumvma2.2 . . 3 (𝜑𝐴 ∈ ℝ)
6 ppifi 27049 . . 3 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
75, 6syl 17 . 2 (𝜑 → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
8 elinel2 4161 . . . . 5 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
9 elfznn 13490 . . . . 5 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
108, 9anim12i 613 . . . 4 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1110pm4.71ri 560 . . 3 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
125adantr 480 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝐴 ∈ ℝ)
13 prmnn 16620 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1413ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 nnnn0 12425 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
1615ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ0)
1714, 16nnexpcld 14186 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℕ)
1817nnzd 12532 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℤ)
19 flge 13743 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑝𝑘) ∈ ℤ) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
2012, 18, 19syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
21 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℙ)
2221, 13syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℕ)
2322nnrpd 12969 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ+)
24 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℕ)
2524nnzd 12532 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℤ)
26 relogexp 26538 . . . . . . . . . . 11 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
2723, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
2827breq1d 5112 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
2924nnred 12177 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℝ)
3012adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ)
31 0red 11153 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 ∈ ℝ)
3214nnred 12177 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℝ)
3332adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ)
3422nngt0d 12211 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝑝)
35 0red 11153 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ∈ ℝ)
3614nnnn0d 12479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ0)
3736nn0ge0d 12482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ≤ 𝑝)
38 elicc2 13348 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
39 df-3an 1088 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
4038, 39bitrdi 287 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
4140baibd 539 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4235, 12, 32, 37, 41syl22anc 838 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4342biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝𝐴)
4431, 33, 30, 34, 43ltletrd 11310 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝐴)
4530, 44elrpd 12968 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ+)
4645relogcld 26565 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝐴) ∈ ℝ)
47 prmuz2 16642 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
48 eluzelre 12780 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
49 eluz2gt1 12855 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
5048, 49rplogcld 26571 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
5121, 47, 503syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝑝) ∈ ℝ+)
5229, 46, 51lemuldivd 13020 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
5346, 51rerpdivcld 13002 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
54 flge 13743 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5553, 25, 54syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5628, 52, 553bitrd 305 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5717adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℕ)
5857nnrpd 12969 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℝ+)
5958, 45logled 26569 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
60 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
61 nnuz 12812 . . . . . . . . . . 11 ℕ = (ℤ‘1)
6260, 61eleqtrdi 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ (ℤ‘1))
6362adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ (ℤ‘1))
6453flcld 13736 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
65 elfz5 13453 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6663, 64, 65syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6756, 59, 663bitr4d 311 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))
6867pm5.32da 579 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
6914nncnd 12178 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℂ)
7069exp1d 14082 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) = 𝑝)
7114nnge1d 12210 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 1 ≤ 𝑝)
7232, 71, 62leexp2ad 14195 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) ≤ (𝑝𝑘))
7370, 72eqbrtrrd 5126 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ≤ (𝑝𝑘))
7417nnred 12177 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℝ)
75 letr 11244 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
7632, 74, 12, 75syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
7773, 76mpand 695 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
7877, 42sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝 ∈ (0[,]𝐴)))
7978pm4.71rd 562 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴)))
80 elin 3927 . . . . . . . . 9 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
8180rbaib 538 . . . . . . . 8 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8281ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8382anbi1d 631 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
8468, 79, 833bitr4rd 312 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ≤ 𝐴))
8517, 61eleqtrdi 2838 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ (ℤ‘1))
8612flcld 13736 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (⌊‘𝐴) ∈ ℤ)
87 elfz5 13453 . . . . . 6 (((𝑝𝑘) ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
8885, 86, 87syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
8920, 84, 883bitr4d 311 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ∈ (1...(⌊‘𝐴))))
9089pm5.32da 579 . . 3 (𝜑 → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
9111, 90bitrid 283 . 2 (𝜑 → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
92 fsumvma2.3 . 2 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
93 fsumvma2.4 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
941, 2, 4, 7, 91, 92, 93fsumvma 27157 1 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  [,]cicc 13285  ...cfz 13444  cfl 13728  cexp 14002  Σcsu 15628  cprime 16617  logclog 26496  Λcvma 27035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-vma 27041
This theorem is referenced by:  chpval2  27162  rplogsumlem2  27429  rpvmasumlem  27431
  Copyright terms: Public domain W3C validator