| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.) |
| Ref | Expression |
|---|---|
| rdgeq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 8382 | . 2 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | |
| 2 | rdgeq1 8381 | . 2 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐵) = rec(𝐺, 𝐵)) | |
| 3 | 1, 2 | sylan9eqr 2787 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-xp 5646 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fv 6521 df-ov 7392 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: seqomeq12 8424 seqeq3 13977 seqseq123d 28186 satf 35340 satf0 35359 csbfinxpg 37371 |
| Copyright terms: Public domain | W3C validator |