| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.) |
| Ref | Expression |
|---|---|
| rdgeq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 8331 | . 2 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | |
| 2 | rdgeq1 8330 | . 2 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐵) = rec(𝐺, 𝐵)) | |
| 3 | 1, 2 | sylan9eqr 2788 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 reccrdg 8328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 |
| This theorem is referenced by: seqomeq12 8373 seqeq3 13910 seqseq123d 28214 satf 35385 satf0 35404 csbfinxpg 37421 |
| Copyright terms: Public domain | W3C validator |