MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq12 Structured version   Visualization version   GIF version

Theorem rdgeq12 8381
Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
rdgeq12 ((𝐹 = 𝐺𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵))

Proof of Theorem rdgeq12
StepHypRef Expression
1 rdgeq2 8380 . 2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
2 rdgeq1 8379 . 2 (𝐹 = 𝐺 → rec(𝐹, 𝐵) = rec(𝐺, 𝐵))
31, 2sylan9eqr 2786 1 ((𝐹 = 𝐺𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  seqomeq12  8422  seqeq3  13971  seqseq123d  28180  satf  35340  satf0  35359  csbfinxpg  37376
  Copyright terms: Public domain W3C validator