Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdgeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.) |
Ref | Expression |
---|---|
rdgeq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 8058 | . 2 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | |
2 | rdgeq1 8057 | . 2 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐵) = rec(𝐺, 𝐵)) | |
3 | 1, 2 | sylan9eqr 2815 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 reccrdg 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-iota 6294 df-fv 6343 df-wrecs 7957 df-recs 8018 df-rdg 8056 |
This theorem is referenced by: seqomeq12 8100 seqeq3 13423 satf 32831 satf0 32850 trpredeq1 33306 trpredeq2 33307 trpred0 33322 csbfinxpg 35085 |
Copyright terms: Public domain | W3C validator |