| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.) |
| Ref | Expression |
|---|---|
| rdgeq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 8434 | . 2 ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | |
| 2 | rdgeq1 8433 | . 2 ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐵) = rec(𝐺, 𝐵)) | |
| 3 | 1, 2 | sylan9eqr 2791 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 reccrdg 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6494 df-fv 6549 df-ov 7416 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 |
| This theorem is referenced by: seqomeq12 8476 seqeq3 14029 seqseq123d 28228 satf 35317 satf0 35336 csbfinxpg 37348 |
| Copyright terms: Public domain | W3C validator |