MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refref Structured version   Visualization version   GIF version

Theorem refref 22572
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refref (𝐴𝑉𝐴Ref𝐴)

Proof of Theorem refref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐴 = 𝐴
2 ssid 3939 . . . . 5 𝑥𝑥
3 sseq2 3943 . . . . . 6 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
43rspcev 3552 . . . . 5 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
52, 4mpan2 687 . . . 4 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
65rgen 3073 . . 3 𝑥𝐴𝑦𝐴 𝑥𝑦
71, 6pm3.2i 470 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
81, 1isref 22568 . 2 (𝐴𝑉 → (𝐴Ref𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
97, 8mpbiri 257 1 (𝐴𝑉𝐴Ref𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   cuni 4836   class class class wbr 5070  Refcref 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-ref 22564
This theorem is referenced by:  locfinref  31693
  Copyright terms: Public domain W3C validator