MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refref Structured version   Visualization version   GIF version

Theorem refref 23438
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refref (𝐴𝑉𝐴Ref𝐴)

Proof of Theorem refref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 𝐴 = 𝐴
2 ssid 3954 . . . . 5 𝑥𝑥
3 sseq2 3958 . . . . . 6 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
43rspcev 3574 . . . . 5 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
52, 4mpan2 691 . . . 4 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
65rgen 3051 . . 3 𝑥𝐴𝑦𝐴 𝑥𝑦
71, 6pm3.2i 470 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
81, 1isref 23434 . 2 (𝐴𝑉 → (𝐴Ref𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
97, 8mpbiri 258 1 (𝐴𝑉𝐴Ref𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   cuni 4860   class class class wbr 5095  Refcref 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-ref 23430
This theorem is referenced by:  locfinref  33865
  Copyright terms: Public domain W3C validator