| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refref | Structured version Visualization version GIF version | ||
| Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| Ref | Expression |
|---|---|
| refref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | ssid 3954 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
| 3 | sseq2 3958 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
| 4 | 3 | rspcev 3574 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| 5 | 2, 4 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| 6 | 5 | rgen 3051 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 |
| 7 | 1, 6 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
| 8 | 1, 1 | isref 23434 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦))) |
| 9 | 7, 8 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ⊆ wss 3899 ∪ cuni 4860 class class class wbr 5095 Refcref 23427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-ref 23430 |
| This theorem is referenced by: locfinref 33865 |
| Copyright terms: Public domain | W3C validator |