Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refref | Structured version Visualization version GIF version |
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
Ref | Expression |
---|---|
refref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | ssid 3915 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
3 | sseq2 3919 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
4 | 3 | rspcev 3542 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
5 | 2, 4 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
6 | 5 | rgen 3081 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 |
7 | 1, 6 | pm3.2i 475 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
8 | 1, 1 | isref 22210 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦))) |
9 | 7, 8 | mpbiri 261 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 ⊆ wss 3859 ∪ cuni 4799 class class class wbr 5033 Refcref 22203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-ref 22206 |
This theorem is referenced by: locfinref 31313 |
Copyright terms: Public domain | W3C validator |