Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refref | Structured version Visualization version GIF version |
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
Ref | Expression |
---|---|
refref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | ssid 3939 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
3 | sseq2 3943 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
4 | 3 | rspcev 3552 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
5 | 2, 4 | mpan2 687 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
6 | 5 | rgen 3073 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 |
7 | 1, 6 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) |
8 | 1, 1 | isref 22568 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦))) |
9 | 7, 8 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 Refcref 22561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-ref 22564 |
This theorem is referenced by: locfinref 31693 |
Copyright terms: Public domain | W3C validator |