MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refref Structured version   Visualization version   GIF version

Theorem refref 22214
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refref (𝐴𝑉𝐴Ref𝐴)

Proof of Theorem refref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . 3 𝐴 = 𝐴
2 ssid 3915 . . . . 5 𝑥𝑥
3 sseq2 3919 . . . . . 6 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
43rspcev 3542 . . . . 5 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
52, 4mpan2 691 . . . 4 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
65rgen 3081 . . 3 𝑥𝐴𝑦𝐴 𝑥𝑦
71, 6pm3.2i 475 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
81, 1isref 22210 . 2 (𝐴𝑉 → (𝐴Ref𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
97, 8mpbiri 261 1 (𝐴𝑉𝐴Ref𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  wrex 3072  wss 3859   cuni 4799   class class class wbr 5033  Refcref 22203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-xp 5531  df-rel 5532  df-ref 22206
This theorem is referenced by:  locfinref  31313
  Copyright terms: Public domain W3C validator