MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refref Structured version   Visualization version   GIF version

Theorem refref 22664
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refref (𝐴𝑉𝐴Ref𝐴)

Proof of Theorem refref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐴 = 𝐴
2 ssid 3943 . . . . 5 𝑥𝑥
3 sseq2 3947 . . . . . 6 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
43rspcev 3561 . . . . 5 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
52, 4mpan2 688 . . . 4 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
65rgen 3074 . . 3 𝑥𝐴𝑦𝐴 𝑥𝑦
71, 6pm3.2i 471 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
81, 1isref 22660 . 2 (𝐴𝑉 → (𝐴Ref𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
97, 8mpbiri 257 1 (𝐴𝑉𝐴Ref𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   cuni 4839   class class class wbr 5074  Refcref 22653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-ref 22656
This theorem is referenced by:  locfinref  31791
  Copyright terms: Public domain W3C validator