MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssref Structured version   Visualization version   GIF version

Theorem ssref 22571
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
ssref.1 𝑋 = 𝐴
ssref.2 𝑌 = 𝐵
Assertion
Ref Expression
ssref ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)

Proof of Theorem ssref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 (𝑋 = 𝑌𝑌 = 𝑋)
21biimpi 215 . . 3 (𝑋 = 𝑌𝑌 = 𝑋)
323ad2ant3 1133 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝑌 = 𝑋)
4 ssel2 3912 . . . . 5 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
543ad2antl2 1184 . . . 4 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → 𝑥𝐵)
6 ssid 3939 . . . 4 𝑥𝑥
7 sseq2 3943 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
87rspcev 3552 . . . 4 ((𝑥𝐵𝑥𝑥) → ∃𝑦𝐵 𝑥𝑦)
95, 6, 8sylancl 585 . . 3 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
109ralrimiva 3107 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
11 ssref.1 . . . 4 𝑋 = 𝐴
12 ssref.2 . . . 4 𝑌 = 𝐵
1311, 12isref 22568 . . 3 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
14133ad2ant1 1131 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
153, 10, 14mpbir2and 709 1 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   cuni 4836   class class class wbr 5070  Refcref 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-ref 22564
This theorem is referenced by:  cmpcref  31702  refssfne  34474
  Copyright terms: Public domain W3C validator