Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssref | Structured version Visualization version GIF version |
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
ssref.1 | ⊢ 𝑋 = ∪ 𝐴 |
ssref.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
ssref | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2746 | . . . 4 ⊢ (𝑋 = 𝑌 ↔ 𝑌 = 𝑋) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝑋 = 𝑌 → 𝑌 = 𝑋) |
3 | 2 | 3ad2ant3 1133 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑌 = 𝑋) |
4 | ssel2 3920 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
5 | 4 | 3ad2antl2 1184 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
6 | ssid 3947 | . . . 4 ⊢ 𝑥 ⊆ 𝑥 | |
7 | sseq2 3951 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
8 | 7 | rspcev 3560 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
9 | 5, 6, 8 | sylancl 585 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
10 | 9 | ralrimiva 3109 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
11 | ssref.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
12 | ssref.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
13 | 11, 12 | isref 22641 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
14 | 13 | 3ad2ant1 1131 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
15 | 3, 10, 14 | mpbir2and 709 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 ∪ cuni 4844 class class class wbr 5078 Refcref 22634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-ref 22637 |
This theorem is referenced by: cmpcref 31779 refssfne 34526 |
Copyright terms: Public domain | W3C validator |