MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssref Structured version   Visualization version   GIF version

Theorem ssref 23015
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
ssref.1 𝑋 = 𝐴
ssref.2 𝑌 = 𝐵
Assertion
Ref Expression
ssref ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)

Proof of Theorem ssref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2739 . . . 4 (𝑋 = 𝑌𝑌 = 𝑋)
21biimpi 215 . . 3 (𝑋 = 𝑌𝑌 = 𝑋)
323ad2ant3 1135 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝑌 = 𝑋)
4 ssel2 3977 . . . . 5 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
543ad2antl2 1186 . . . 4 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → 𝑥𝐵)
6 ssid 4004 . . . 4 𝑥𝑥
7 sseq2 4008 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
87rspcev 3612 . . . 4 ((𝑥𝐵𝑥𝑥) → ∃𝑦𝐵 𝑥𝑦)
95, 6, 8sylancl 586 . . 3 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
109ralrimiva 3146 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
11 ssref.1 . . . 4 𝑋 = 𝐴
12 ssref.2 . . . 4 𝑌 = 𝐵
1311, 12isref 23012 . . 3 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
14133ad2ant1 1133 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
153, 10, 14mpbir2and 711 1 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948   cuni 4908   class class class wbr 5148  Refcref 23005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-ref 23008
This theorem is referenced by:  cmpcref  32825  refssfne  35238
  Copyright terms: Public domain W3C validator