Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssref | Structured version Visualization version GIF version |
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
ssref.1 | ⊢ 𝑋 = ∪ 𝐴 |
ssref.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
ssref | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . 4 ⊢ (𝑋 = 𝑌 ↔ 𝑌 = 𝑋) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝑋 = 𝑌 → 𝑌 = 𝑋) |
3 | 2 | 3ad2ant3 1133 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑌 = 𝑋) |
4 | ssel2 3912 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
5 | 4 | 3ad2antl2 1184 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
6 | ssid 3939 | . . . 4 ⊢ 𝑥 ⊆ 𝑥 | |
7 | sseq2 3943 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
8 | 7 | rspcev 3552 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
9 | 5, 6, 8 | sylancl 585 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
10 | 9 | ralrimiva 3107 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
11 | ssref.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
12 | ssref.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
13 | 11, 12 | isref 22568 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
14 | 13 | 3ad2ant1 1131 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
15 | 3, 10, 14 | mpbir2and 709 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 Refcref 22561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-ref 22564 |
This theorem is referenced by: cmpcref 31702 refssfne 34474 |
Copyright terms: Public domain | W3C validator |