| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssref | Structured version Visualization version GIF version | ||
| Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| ssref.1 | ⊢ 𝑋 = ∪ 𝐴 |
| ssref.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| ssref | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . . . 4 ⊢ (𝑋 = 𝑌 ↔ 𝑌 = 𝑋) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝑋 = 𝑌 → 𝑌 = 𝑋) |
| 3 | 2 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑌 = 𝑋) |
| 4 | ssel2 3944 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 5 | 4 | 3ad2antl2 1187 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 6 | ssid 3972 | . . . 4 ⊢ 𝑥 ⊆ 𝑥 | |
| 7 | sseq2 3976 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) | |
| 8 | 7 | rspcev 3591 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 9 | 5, 6, 8 | sylancl 586 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 10 | 9 | ralrimiva 3126 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 11 | ssref.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 12 | ssref.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
| 13 | 11, 12 | isref 23403 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 15 | 3, 10, 14 | mpbir2and 713 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 Refcref 23396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-ref 23399 |
| This theorem is referenced by: cmpcref 33847 refssfne 36353 |
| Copyright terms: Public domain | W3C validator |