MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssref Structured version   Visualization version   GIF version

Theorem ssref 23420
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
ssref.1 𝑋 = 𝐴
ssref.2 𝑌 = 𝐵
Assertion
Ref Expression
ssref ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)

Proof of Theorem ssref
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2737 . . . 4 (𝑋 = 𝑌𝑌 = 𝑋)
21biimpi 216 . . 3 (𝑋 = 𝑌𝑌 = 𝑋)
323ad2ant3 1135 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝑌 = 𝑋)
4 ssel2 3927 . . . . 5 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
543ad2antl2 1187 . . . 4 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → 𝑥𝐵)
6 ssid 3955 . . . 4 𝑥𝑥
7 sseq2 3959 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
87rspcev 3575 . . . 4 ((𝑥𝐵𝑥𝑥) → ∃𝑦𝐵 𝑥𝑦)
95, 6, 8sylancl 586 . . 3 (((𝐴𝐶𝐴𝐵𝑋 = 𝑌) ∧ 𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
109ralrimiva 3122 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
11 ssref.1 . . . 4 𝑋 = 𝐴
12 ssref.2 . . . 4 𝑌 = 𝐵
1311, 12isref 23417 . . 3 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
14133ad2ant1 1133 . 2 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
153, 10, 14mpbir2and 713 1 ((𝐴𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Ref𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wrex 3054  wss 3900   cuni 4857   class class class wbr 5089  Refcref 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-ref 23413
This theorem is referenced by:  cmpcref  33853  refssfne  36371
  Copyright terms: Public domain W3C validator