![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexpsucl | Structured version Visualization version GIF version |
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpsucl | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12479 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | simp3 1137 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
3 | simp1 1135 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℕ) | |
4 | relexpsucnnl 14982 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
6 | 5 | 3expib 1121 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
7 | simp2 1136 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → Rel 𝑅) | |
8 | relcoi1 6278 | . . . . . . . 8 ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
10 | simp1 1135 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
11 | 10 | oveq2d 7428 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
12 | simp3 1137 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
13 | relexp0 14975 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
14 | 12, 7, 13 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
15 | 11, 14 | eqtrd 2771 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ ∪ ∪ 𝑅)) |
16 | 15 | coeq2d 5863 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅 ∘ (𝑅↑𝑟𝑁)) = (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅))) |
17 | 10 | oveq1d 7427 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = (0 + 1)) |
18 | 0p1e1 12339 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
19 | 17, 18 | eqtrdi 2787 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = 1) |
20 | 19 | oveq2d 7428 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅↑𝑟1)) |
21 | relexp1g 14978 | . . . . . . . . 9 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
22 | 12, 21 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟1) = 𝑅) |
23 | 20, 22 | eqtrd 2771 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = 𝑅) |
24 | 9, 16, 23 | 3eqtr4rd 2782 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
25 | 24 | 3expib 1121 | . . . . 5 ⊢ (𝑁 = 0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
26 | 6, 25 | jaoi 854 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
27 | 1, 26 | sylbi 216 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
28 | 27 | 3impib 1115 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
29 | 28 | 3com13 1123 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∪ cuni 4909 I cid 5574 ↾ cres 5679 ∘ ccom 5681 Rel wrel 5682 (class class class)co 7412 0cc0 11113 1c1 11114 + caddc 11116 ℕcn 12217 ℕ0cn0 12477 ↑𝑟crelexp 14971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-relexp 14972 |
This theorem is referenced by: relexpsucld 14986 |
Copyright terms: Public domain | W3C validator |