![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexpsucl | Structured version Visualization version GIF version |
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpsucl | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12526 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | simp3 1137 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
3 | simp1 1135 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℕ) | |
4 | relexpsucnnl 15066 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) | |
5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
6 | 5 | 3expib 1121 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
7 | simp2 1136 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → Rel 𝑅) | |
8 | relcoi1 6300 | . . . . . . . 8 ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
10 | simp1 1135 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
11 | 10 | oveq2d 7447 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
12 | simp3 1137 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
13 | relexp0 15059 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
14 | 12, 7, 13 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
15 | 11, 14 | eqtrd 2775 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ ∪ ∪ 𝑅)) |
16 | 15 | coeq2d 5876 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅 ∘ (𝑅↑𝑟𝑁)) = (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅))) |
17 | 10 | oveq1d 7446 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = (0 + 1)) |
18 | 0p1e1 12386 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
19 | 17, 18 | eqtrdi 2791 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = 1) |
20 | 19 | oveq2d 7447 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅↑𝑟1)) |
21 | relexp1g 15062 | . . . . . . . . 9 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
22 | 12, 21 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟1) = 𝑅) |
23 | 20, 22 | eqtrd 2775 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = 𝑅) |
24 | 9, 16, 23 | 3eqtr4rd 2786 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
25 | 24 | 3expib 1121 | . . . . 5 ⊢ (𝑁 = 0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
26 | 6, 25 | jaoi 857 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
27 | 1, 26 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁)))) |
28 | 27 | 3impib 1115 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
29 | 28 | 3com13 1123 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 I cid 5582 ↾ cres 5691 ∘ ccom 5693 Rel wrel 5694 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ℕcn 12264 ℕ0cn0 12524 ↑𝑟crelexp 15055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-relexp 15056 |
This theorem is referenced by: relexpsucld 15070 |
Copyright terms: Public domain | W3C validator |