MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucl Structured version   Visualization version   GIF version

Theorem relexpsucl 14940
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucl ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucl
StepHypRef Expression
1 elnn0 12390 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simp3 1138 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
3 simp1 1136 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑁 ∈ ℕ)
4 relexpsucnnl 14939 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
52, 3, 4syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
653expib 1122 . . . . 5 (𝑁 ∈ ℕ → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
7 simp2 1137 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → Rel 𝑅)
8 relcoi1 6230 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
97, 8syl 17 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
10 simp1 1136 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑁 = 0)
1110oveq2d 7368 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
12 simp3 1138 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
13 relexp0 14932 . . . . . . . . . 10 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
1412, 7, 13syl2anc 584 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟0) = ( I ↾ 𝑅))
1511, 14eqtrd 2768 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ 𝑅))
1615coeq2d 5806 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ( I ↾ 𝑅)))
1710oveq1d 7367 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = (0 + 1))
18 0p1e1 12249 . . . . . . . . . 10 (0 + 1) = 1
1917, 18eqtrdi 2784 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = 1)
2019oveq2d 7368 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅𝑟1))
21 relexp1g 14935 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2212, 21syl 17 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2320, 22eqtrd 2768 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = 𝑅)
249, 16, 233eqtr4rd 2779 . . . . . 6 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
25243expib 1122 . . . . 5 (𝑁 = 0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
266, 25jaoi 857 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
271, 26sylbi 217 . . 3 (𝑁 ∈ ℕ0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
28273impib 1116 . 2 ((𝑁 ∈ ℕ0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
29283com13 1124 1 ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113   cuni 4858   I cid 5513  cres 5621  ccom 5623  Rel wrel 5624  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cn 12132  0cn0 12388  𝑟crelexp 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-relexp 14929
This theorem is referenced by:  relexpsucld  14943
  Copyright terms: Public domain W3C validator