MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucl Structured version   Visualization version   GIF version

Theorem relexpsucl 14935
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucl ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucl
StepHypRef Expression
1 elnn0 12380 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simp3 1138 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
3 simp1 1136 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑁 ∈ ℕ)
4 relexpsucnnl 14934 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
52, 3, 4syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
653expib 1122 . . . . 5 (𝑁 ∈ ℕ → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
7 simp2 1137 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → Rel 𝑅)
8 relcoi1 6225 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
97, 8syl 17 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
10 simp1 1136 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑁 = 0)
1110oveq2d 7362 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
12 simp3 1138 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
13 relexp0 14927 . . . . . . . . . 10 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
1412, 7, 13syl2anc 584 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟0) = ( I ↾ 𝑅))
1511, 14eqtrd 2766 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ 𝑅))
1615coeq2d 5802 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ( I ↾ 𝑅)))
1710oveq1d 7361 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = (0 + 1))
18 0p1e1 12239 . . . . . . . . . 10 (0 + 1) = 1
1917, 18eqtrdi 2782 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = 1)
2019oveq2d 7362 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅𝑟1))
21 relexp1g 14930 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2212, 21syl 17 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2320, 22eqtrd 2766 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = 𝑅)
249, 16, 233eqtr4rd 2777 . . . . . 6 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
25243expib 1122 . . . . 5 (𝑁 = 0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
266, 25jaoi 857 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
271, 26sylbi 217 . . 3 (𝑁 ∈ ℕ0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
28273impib 1116 . 2 ((𝑁 ∈ ℕ0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
29283com13 1124 1 ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   cuni 4859   I cid 5510  cres 5618  ccom 5620  Rel wrel 5621  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  cn 12122  0cn0 12378  𝑟crelexp 14923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-seq 13906  df-relexp 14924
This theorem is referenced by:  relexpsucld  14938
  Copyright terms: Public domain W3C validator