MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucl Structured version   Visualization version   GIF version

Theorem relexpsucl 14394
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucl ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))

Proof of Theorem relexpsucl
StepHypRef Expression
1 elnn0 11902 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simp3 1134 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
3 simp1 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑁 ∈ ℕ)
4 relexpsucnnl 14393 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
52, 3, 4syl2anc 586 . . . . . 6 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
653expib 1118 . . . . 5 (𝑁 ∈ ℕ → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
7 simp2 1133 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → Rel 𝑅)
8 relcoi1 6131 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
97, 8syl 17 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
10 simp1 1132 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑁 = 0)
1110oveq2d 7174 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
12 simp3 1134 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
13 relexp0 14384 . . . . . . . . . 10 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
1412, 7, 13syl2anc 586 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟0) = ( I ↾ 𝑅))
1511, 14eqtrd 2858 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ 𝑅))
1615coeq2d 5735 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅 ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ( I ↾ 𝑅)))
1710oveq1d 7173 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = (0 + 1))
18 0p1e1 11762 . . . . . . . . . 10 (0 + 1) = 1
1917, 18syl6eq 2874 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = 1)
2019oveq2d 7174 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅𝑟1))
21 relexp1g 14387 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2212, 21syl 17 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟1) = 𝑅)
2320, 22eqtrd 2858 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = 𝑅)
249, 16, 233eqtr4rd 2869 . . . . . 6 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
25243expib 1118 . . . . 5 (𝑁 = 0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
266, 25jaoi 853 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
271, 26sylbi 219 . . 3 (𝑁 ∈ ℕ0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁))))
28273impib 1112 . 2 ((𝑁 ∈ ℕ0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
29283com13 1120 1 ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = (𝑅 ∘ (𝑅𝑟𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114   cuni 4840   I cid 5461  cres 5559  ccom 5561  Rel wrel 5562  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  0cn0 11900  𝑟crelexp 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-relexp 14382
This theorem is referenced by:  relexpsucld  14395  relexpindlem  14424
  Copyright terms: Public domain W3C validator