| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcoi2 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
| Ref | Expression |
|---|---|
| relcoi2 | ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmrnssfld 5920 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 2 | unss 4139 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) | |
| 3 | simpr 484 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) → ran 𝑅 ⊆ ∪ ∪ 𝑅) | |
| 4 | 2, 3 | sylbir 235 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
| 5 | cores 6204 | . . 3 ⊢ (ran 𝑅 ⊆ ∪ ∪ 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) | |
| 6 | 1, 4, 5 | mp2b 10 | . 2 ⊢ (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅) |
| 7 | coi2 6219 | . 2 ⊢ (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅) | |
| 8 | 6, 7 | eqtrid 2780 | 1 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∪ cun 3896 ⊆ wss 3898 ∪ cuni 4860 I cid 5515 dom cdm 5621 ran crn 5622 ↾ cres 5623 ∘ ccom 5625 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 |
| This theorem is referenced by: relexpsucr 14946 tsrdir 18518 |
| Copyright terms: Public domain | W3C validator |