MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi2 Structured version   Visualization version   GIF version

Theorem relcoi2 6277
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 5970 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2 unss 4185 . . . 4 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
3 simpr 486 . . . 4 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) → ran 𝑅 𝑅)
42, 3sylbir 234 . . 3 ((dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅 → ran 𝑅 𝑅)
5 cores 6249 . . 3 (ran 𝑅 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
61, 4, 5mp2b 10 . 2 (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)
7 coi2 6263 . 2 (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅)
86, 7eqtrid 2785 1 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  cun 3947  wss 3949   cuni 4909   I cid 5574  dom cdm 5677  ran crn 5678  cres 5679  ccom 5681  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  relexpsucr  14979  tsrdir  18557
  Copyright terms: Public domain W3C validator