![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcoi2 | Structured version Visualization version GIF version |
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
Ref | Expression |
---|---|
relcoi2 | ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmrnssfld 5970 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
2 | unss 4185 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) | |
3 | simpr 486 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) → ran 𝑅 ⊆ ∪ ∪ 𝑅) | |
4 | 2, 3 | sylbir 234 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | cores 6249 | . . 3 ⊢ (ran 𝑅 ⊆ ∪ ∪ 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) | |
6 | 1, 4, 5 | mp2b 10 | . 2 ⊢ (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅) |
7 | coi2 6263 | . 2 ⊢ (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅) | |
8 | 6, 7 | eqtrid 2785 | 1 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∪ cun 3947 ⊆ wss 3949 ∪ cuni 4909 I cid 5574 dom cdm 5677 ran crn 5678 ↾ cres 5679 ∘ ccom 5681 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 |
This theorem is referenced by: relexpsucr 14979 tsrdir 18557 |
Copyright terms: Public domain | W3C validator |