![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcoi2 | Structured version Visualization version GIF version |
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
Ref | Expression |
---|---|
relcoi2 | ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmrnssfld 5588 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
2 | unss 3985 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) | |
3 | simpr 478 | . . . 4 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) → ran 𝑅 ⊆ ∪ ∪ 𝑅) | |
4 | 2, 3 | sylbir 227 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | cores 5857 | . . 3 ⊢ (ran 𝑅 ⊆ ∪ ∪ 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) | |
6 | 1, 4, 5 | mp2b 10 | . 2 ⊢ (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅) |
7 | coi2 5871 | . 2 ⊢ (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅) | |
8 | 6, 7 | syl5eq 2845 | 1 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∪ cun 3767 ⊆ wss 3769 ∪ cuni 4628 I cid 5219 dom cdm 5312 ran crn 5313 ↾ cres 5314 ∘ ccom 5316 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 |
This theorem is referenced by: relexpsucr 14110 tsrdir 17553 |
Copyright terms: Public domain | W3C validator |