MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relresfld Structured version   Visualization version   GIF version

Theorem relresfld 6168
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld (Rel 𝑅 → (𝑅 𝑅) = 𝑅)

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 6167 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
21reseq2d 5880 . . 3 (Rel 𝑅 → (𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
3 resundi 5894 . . 3 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))
4 eqtr 2761 . . . 4 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)))
5 resss 5905 . . . . 5 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
6 resdm 5925 . . . . 5 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
7 ssequn2 4113 . . . . . 6 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
8 uneq1 4086 . . . . . . . . 9 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
98eqeq2d 2749 . . . . . . . 8 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) ↔ (𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))))
10 eqtr 2761 . . . . . . . . 9 (((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) ∧ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) → (𝑅 𝑅) = 𝑅)
1110ex 412 . . . . . . . 8 ((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅))
129, 11syl6bi 252 . . . . . . 7 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅)))
1312com3r 87 . . . . . 6 ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
147, 13sylbi 216 . . . . 5 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
155, 6, 14mpsyl 68 . . . 4 (Rel 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅))
164, 15syl5com 31 . . 3 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
172, 3, 16sylancl 585 . 2 (Rel 𝑅 → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
1817pm2.43i 52 1 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cun 3881  wss 3883   cuni 4836  dom cdm 5580  ran crn 5581  cres 5582  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  relcoi1  6170
  Copyright terms: Public domain W3C validator