MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relresfld Structured version   Visualization version   GIF version

Theorem relresfld 6095
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld (Rel 𝑅 → (𝑅 𝑅) = 𝑅)

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 6094 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
21reseq2d 5818 . . 3 (Rel 𝑅 → (𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
3 resundi 5832 . . 3 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))
4 eqtr 2818 . . . 4 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)))
5 resss 5843 . . . . 5 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
6 resdm 5863 . . . . 5 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
7 ssequn2 4110 . . . . . 6 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
8 uneq1 4083 . . . . . . . . 9 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
98eqeq2d 2809 . . . . . . . 8 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) ↔ (𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))))
10 eqtr 2818 . . . . . . . . 9 (((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) ∧ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) → (𝑅 𝑅) = 𝑅)
1110ex 416 . . . . . . . 8 ((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅))
129, 11syl6bi 256 . . . . . . 7 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅)))
1312com3r 87 . . . . . 6 ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
147, 13sylbi 220 . . . . 5 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
155, 6, 14mpsyl 68 . . . 4 (Rel 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅))
164, 15syl5com 31 . . 3 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
172, 3, 16sylancl 589 . 2 (Rel 𝑅 → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
1817pm2.43i 52 1 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  cun 3879  wss 3881   cuni 4800  dom cdm 5519  ran crn 5520  cres 5521  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531
This theorem is referenced by:  relcoi1  6097
  Copyright terms: Public domain W3C validator