| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpl | Structured version Visualization version GIF version | ||
| Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmpl | ⊢ Rel dom mPoly |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpl 21818 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) | |
| 2 | 1 | reldmmpo 7483 | 1 ⊢ Rel dom mPoly |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 3394 Vcvv 3436 ⦋csb 3851 class class class wbr 5092 dom cdm 5619 Rel wrel 5624 ‘cfv 6482 (class class class)co 7349 finSupp cfsupp 9251 Basecbs 17120 ↾s cress 17141 0gc0g 17343 mPwSer cmps 21811 mPoly cmpl 21813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7353 df-mpo 7354 df-mpl 21818 |
| This theorem is referenced by: mplval 21896 mplrcl 21901 selvval 22020 ismhp 22025 psdmplcl 22047 mplbaspropd 22119 ply1ascl 22142 mdegfval 25965 |
| Copyright terms: Public domain | W3C validator |