MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpl Structured version   Visualization version   GIF version

Theorem reldmmpl 21930
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmmpl Rel dom mPoly

Proof of Theorem reldmmpl
Dummy variables 𝑓 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpl 21853 . 2 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
21reldmmpo 7503 1 Rel dom mPoly
Colors of variables: wff setvar class
Syntax hints:  {crab 3402  Vcvv 3444  csb 3859   class class class wbr 5102  dom cdm 5631  Rel wrel 5636  cfv 6499  (class class class)co 7369   finSupp cfsupp 9288  Basecbs 17155  s cress 17176  0gc0g 17378   mPwSer cmps 21846   mPoly cmpl 21848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-oprab 7373  df-mpo 7374  df-mpl 21853
This theorem is referenced by:  mplval  21931  mplrcl  21936  selvval  22055  ismhp  22060  psdmplcl  22082  mplbaspropd  22154  ply1ascl  22177  mdegfval  26000
  Copyright terms: Public domain W3C validator