| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpl | Structured version Visualization version GIF version | ||
| Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmpl | ⊢ Rel dom mPoly |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpl 21871 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) | |
| 2 | 1 | reldmmpo 7541 | 1 ⊢ Rel dom mPoly |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 3415 Vcvv 3459 ⦋csb 3874 class class class wbr 5119 dom cdm 5654 Rel wrel 5659 ‘cfv 6531 (class class class)co 7405 finSupp cfsupp 9373 Basecbs 17228 ↾s cress 17251 0gc0g 17453 mPwSer cmps 21864 mPoly cmpl 21866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7409 df-mpo 7410 df-mpl 21871 |
| This theorem is referenced by: mplval 21949 mplrcl 21954 selvval 22073 ismhp 22078 psdmplcl 22100 mplbaspropd 22172 ply1ascl 22195 mdegfval 26019 |
| Copyright terms: Public domain | W3C validator |