![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmpl | Structured version Visualization version GIF version |
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmmpl | ⊢ Rel dom mPoly |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpl 19864 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) | |
2 | 1 | reldmmpo 7099 | 1 ⊢ Rel dom mPoly |
Colors of variables: wff setvar class |
Syntax hints: {crab 3086 Vcvv 3409 ⦋csb 3780 class class class wbr 4925 dom cdm 5403 Rel wrel 5408 ‘cfv 6185 (class class class)co 6974 finSupp cfsupp 8626 Basecbs 16337 ↾s cress 16338 0gc0g 16567 mPwSer cmps 19857 mPoly cmpl 19859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-dm 5413 df-oprab 6978 df-mpo 6979 df-mpl 19864 |
This theorem is referenced by: mplval 19934 mplrcl 19995 mplbaspropd 20120 ply1ascl 20141 mdegfval 24371 mdegcl 24378 |
Copyright terms: Public domain | W3C validator |