![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmpl | Structured version Visualization version GIF version |
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmmpl | ⊢ Rel dom mPoly |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpl 21954 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom mPoly |
Colors of variables: wff setvar class |
Syntax hints: {crab 3443 Vcvv 3488 ⦋csb 3921 class class class wbr 5166 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 finSupp cfsupp 9431 Basecbs 17258 ↾s cress 17287 0gc0g 17499 mPwSer cmps 21947 mPoly cmpl 21949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-mpl 21954 |
This theorem is referenced by: mplval 22032 mplrcl 22037 mplbaspropd 22259 ply1ascl 22282 mdegfval 26121 mdegcl 26128 |
Copyright terms: Public domain | W3C validator |