![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
mplrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
mplrcl | ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplrcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | mplrcl.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
3 | reldmmpl 19749 | . 2 ⊢ Rel dom mPoly | |
4 | 1, 2, 3 | strov2rcl 16246 | 1 ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 mPoly cmpl 19675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-slot 16187 df-base 16189 df-mpl 19680 |
This theorem is referenced by: mdegleb 24164 mdeglt 24165 mdegldg 24166 mdegxrcl 24167 mdegcl 24169 mdegnn0cl 24171 |
Copyright terms: Public domain | W3C validator |