Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplbaspropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
psrplusgpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
psrplusgpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
psrplusgpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mplbaspropd | ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrplusgpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | psrplusgpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | 1, 2 | eqtr3d 2795 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) |
4 | 3 | psrbaspropd 20973 | . . . . 5 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
5 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
6 | psrplusgpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
7 | 1, 2, 6 | grpidpropd 17952 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
8 | 7 | breq2d 5048 | . . . . 5 ⊢ (𝜑 → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
10 | 5, 9 | rabeqbidv 3398 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)}) |
11 | eqid 2758 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2758 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
13 | eqid 2758 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
14 | eqid 2758 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2758 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
16 | 11, 12, 13, 14, 15 | mplbas 20771 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} |
17 | eqid 2758 | . . . 4 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
18 | eqid 2758 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
19 | eqid 2758 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
20 | eqid 2758 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | eqid 2758 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
22 | 17, 18, 19, 20, 21 | mplbas 20771 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)} |
23 | 10, 16, 22 | 3eqtr4g 2818 | . 2 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
24 | reldmmpl 20769 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc1 7195 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅) |
26 | 24 | ovprc1 7195 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅) |
27 | 25, 26 | eqtr4d 2796 | . . . 4 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆)) |
28 | 27 | fveq2d 6667 | . . 3 ⊢ (¬ 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
29 | 28 | adantl 485 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
30 | 23, 29 | pm2.61dan 812 | 1 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ∅c0 4227 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 finSupp cfsupp 8879 Basecbs 16555 +gcplusg 16637 0gc0g 16785 mPwSer cmps 20680 mPoly cmpl 20682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-sca 16653 df-vsca 16654 df-tset 16656 df-0g 16787 df-psr 20685 df-mpl 20687 |
This theorem is referenced by: ply1baspropd 20981 mdegpropd 24798 |
Copyright terms: Public domain | W3C validator |