![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplbaspropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
psrplusgpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
psrplusgpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
psrplusgpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mplbaspropd | ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrplusgpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | psrplusgpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | 1, 2 | eqtr3d 2817 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) |
4 | 3 | psrbaspropd 20106 | . . . . 5 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
5 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
6 | psrplusgpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
7 | 1, 2, 6 | grpidpropd 17729 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
8 | 7 | breq2d 4941 | . . . . 5 ⊢ (𝜑 → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
10 | 5, 9 | rabeqbidv 3409 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)}) |
11 | eqid 2779 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2779 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
13 | eqid 2779 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
14 | eqid 2779 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2779 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
16 | 11, 12, 13, 14, 15 | mplbas 19923 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} |
17 | eqid 2779 | . . . 4 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
18 | eqid 2779 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
19 | eqid 2779 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
20 | eqid 2779 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | eqid 2779 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
22 | 17, 18, 19, 20, 21 | mplbas 19923 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)} |
23 | 10, 16, 22 | 3eqtr4g 2840 | . 2 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
24 | reldmmpl 19921 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc1 7014 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅) |
26 | 24 | ovprc1 7014 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅) |
27 | 25, 26 | eqtr4d 2818 | . . . 4 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆)) |
28 | 27 | fveq2d 6503 | . . 3 ⊢ (¬ 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
29 | 28 | adantl 474 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
30 | 23, 29 | pm2.61dan 800 | 1 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3093 Vcvv 3416 ∅c0 4179 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 finSupp cfsupp 8628 Basecbs 16339 +gcplusg 16421 0gc0g 16569 mPwSer cmps 19845 mPoly cmpl 19847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-tset 16440 df-0g 16571 df-psr 19850 df-mpl 19852 |
This theorem is referenced by: ply1baspropd 20114 mdegpropd 24381 |
Copyright terms: Public domain | W3C validator |