| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplbaspropd | Structured version Visualization version GIF version | ||
| Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrplusgpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| psrplusgpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
| psrplusgpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| Ref | Expression |
|---|---|
| mplbaspropd | ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusgpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | psrplusgpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
| 3 | 1, 2 | eqtr3d 2767 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) |
| 4 | 3 | psrbaspropd 22125 | . . . . 5 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
| 6 | psrplusgpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
| 7 | 1, 2, 6 | grpidpropd 18595 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
| 8 | 7 | breq2d 5121 | . . . . 5 ⊢ (𝜑 → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
| 10 | 5, 9 | rabeqbidv 3427 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)}) |
| 11 | eqid 2730 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 12 | eqid 2730 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 13 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 14 | eqid 2730 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 15 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 16 | 11, 12, 13, 14, 15 | mplbas 21905 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} |
| 17 | eqid 2730 | . . . 4 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
| 18 | eqid 2730 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
| 19 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
| 20 | eqid 2730 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 21 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
| 22 | 17, 18, 19, 20, 21 | mplbas 21905 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)} |
| 23 | 10, 16, 22 | 3eqtr4g 2790 | . 2 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
| 24 | reldmmpl 21903 | . . . . . 6 ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc1 7428 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅) |
| 26 | 24 | ovprc1 7428 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅) |
| 27 | 25, 26 | eqtr4d 2768 | . . . 4 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆)) |
| 28 | 27 | fveq2d 6864 | . . 3 ⊢ (¬ 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
| 29 | 28 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
| 30 | 23, 29 | pm2.61dan 812 | 1 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∅c0 4298 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 finSupp cfsupp 9318 Basecbs 17185 +gcplusg 17226 0gc0g 17408 mPwSer cmps 21819 mPoly cmpl 21821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-tset 17245 df-0g 17410 df-psr 21824 df-mpl 21826 |
| This theorem is referenced by: ply1baspropd 22133 mdegpropd 25995 |
| Copyright terms: Public domain | W3C validator |