MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbaspropd Structured version   Visualization version   GIF version

Theorem mplbaspropd 20975
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
mplbaspropd (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem mplbaspropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psrplusgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
2 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
31, 2eqtr3d 2795 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
43psrbaspropd 20973 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
54adantr 484 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
6 psrplusgpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
71, 2, 6grpidpropd 17952 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑆))
87breq2d 5048 . . . . 5 (𝜑 → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
98adantr 484 . . . 4 ((𝜑𝐼 ∈ V) → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
105, 9rabeqbidv 3398 . . 3 ((𝜑𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)})
11 eqid 2758 . . . 4 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
12 eqid 2758 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
13 eqid 2758 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
14 eqid 2758 . . . 4 (0g𝑅) = (0g𝑅)
15 eqid 2758 . . . 4 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
1611, 12, 13, 14, 15mplbas 20771 . . 3 (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)}
17 eqid 2758 . . . 4 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
18 eqid 2758 . . . 4 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
19 eqid 2758 . . . 4 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
20 eqid 2758 . . . 4 (0g𝑆) = (0g𝑆)
21 eqid 2758 . . . 4 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
2217, 18, 19, 20, 21mplbas 20771 . . 3 (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)}
2310, 16, 223eqtr4g 2818 . 2 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
24 reldmmpl 20769 . . . . . 6 Rel dom mPoly
2524ovprc1 7195 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅)
2624ovprc1 7195 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅)
2725, 26eqtr4d 2796 . . . 4 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆))
2827fveq2d 6667 . . 3 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
2928adantl 485 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
3023, 29pm2.61dan 812 1 (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409  c0 4227   class class class wbr 5036  cfv 6340  (class class class)co 7156   finSupp cfsupp 8879  Basecbs 16555  +gcplusg 16637  0gc0g 16785   mPwSer cmps 20680   mPoly cmpl 20682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-sca 16653  df-vsca 16654  df-tset 16656  df-0g 16787  df-psr 20685  df-mpl 20687
This theorem is referenced by:  ply1baspropd  20981  mdegpropd  24798
  Copyright terms: Public domain W3C validator