MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbaspropd Structured version   Visualization version   GIF version

Theorem mplbaspropd 22121
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
mplbaspropd (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem mplbaspropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psrplusgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
2 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
31, 2eqtr3d 2766 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
43psrbaspropd 22119 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
54adantr 480 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
6 psrplusgpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
71, 2, 6grpidpropd 18589 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑆))
87breq2d 5119 . . . . 5 (𝜑 → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
98adantr 480 . . . 4 ((𝜑𝐼 ∈ V) → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
105, 9rabeqbidv 3424 . . 3 ((𝜑𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)})
11 eqid 2729 . . . 4 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
12 eqid 2729 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
13 eqid 2729 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
14 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
15 eqid 2729 . . . 4 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
1611, 12, 13, 14, 15mplbas 21899 . . 3 (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)}
17 eqid 2729 . . . 4 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
18 eqid 2729 . . . 4 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
19 eqid 2729 . . . 4 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
20 eqid 2729 . . . 4 (0g𝑆) = (0g𝑆)
21 eqid 2729 . . . 4 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
2217, 18, 19, 20, 21mplbas 21899 . . 3 (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)}
2310, 16, 223eqtr4g 2789 . 2 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
24 reldmmpl 21897 . . . . . 6 Rel dom mPoly
2524ovprc1 7426 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅)
2624ovprc1 7426 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅)
2725, 26eqtr4d 2767 . . . 4 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆))
2827fveq2d 6862 . . 3 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
2928adantl 481 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
3023, 29pm2.61dan 812 1 (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179  +gcplusg 17220  0gc0g 17402   mPwSer cmps 21813   mPoly cmpl 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-psr 21818  df-mpl 21820
This theorem is referenced by:  ply1baspropd  22127  mdegpropd  25989
  Copyright terms: Public domain W3C validator