Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplbaspropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
psrplusgpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
psrplusgpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
psrplusgpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mplbaspropd | ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrplusgpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | psrplusgpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | 1, 2 | eqtr3d 2778 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) |
4 | 3 | psrbaspropd 21451 | . . . . 5 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
5 | 4 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
6 | psrplusgpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
7 | 1, 2, 6 | grpidpropd 18391 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
8 | 7 | breq2d 5093 | . . . . 5 ⊢ (𝜑 → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
9 | 8 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (𝑎 finSupp (0g‘𝑅) ↔ 𝑎 finSupp (0g‘𝑆))) |
10 | 5, 9 | rabeqbidv 3427 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)}) |
11 | eqid 2736 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2736 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
13 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
14 | eqid 2736 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
16 | 11, 12, 13, 14, 15 | mplbas 21243 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g‘𝑅)} |
17 | eqid 2736 | . . . 4 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
18 | eqid 2736 | . . . 4 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
19 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
20 | eqid 2736 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
22 | 17, 18, 19, 20, 21 | mplbas 21243 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g‘𝑆)} |
23 | 10, 16, 22 | 3eqtr4g 2801 | . 2 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
24 | reldmmpl 21241 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc1 7346 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅) |
26 | 24 | ovprc1 7346 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅) |
27 | 25, 26 | eqtr4d 2779 | . . . 4 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆)) |
28 | 27 | fveq2d 6808 | . . 3 ⊢ (¬ 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
29 | 28 | adantl 483 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
30 | 23, 29 | pm2.61dan 811 | 1 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {crab 3284 Vcvv 3437 ∅c0 4262 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 finSupp cfsupp 9172 Basecbs 16957 +gcplusg 17007 0gc0g 17195 mPwSer cmps 21152 mPoly cmpl 21154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-tset 17026 df-0g 17197 df-psr 21157 df-mpl 21159 |
This theorem is referenced by: ply1baspropd 21459 mdegpropd 25294 |
Copyright terms: Public domain | W3C validator |