![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version |
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1ascl | ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
2 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
3 | eqid 2740 | . . . 4 ⊢ (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅)) | |
4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4 | ply1sca 22275 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
6 | 5 | fveq2d 6924 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
7 | eqid 2740 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
8 | 1on 8534 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1o ∈ On) |
10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
11 | 7, 9, 10 | mplsca 22056 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅))) |
12 | 11 | fveq2d 6924 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅)))) |
13 | eqid 2740 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
14 | 4, 7, 13 | ply1vsca 22247 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))) |
16 | 15 | oveqdr 7476 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦)) |
17 | eqid 2740 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
18 | 7, 4, 17 | ply1mpl1 22281 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1o mPoly 𝑅))) |
20 | fvexd 6935 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 21940 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
22 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
23 | 4, 22 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
24 | reldmmpl 22031 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc2 7488 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o mPoly 𝑅) = ∅) |
26 | 23, 25 | eqtr4d 2783 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅)) |
27 | 26 | fveq2d 6924 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
28 | 21, 27 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)) |
29 | 1, 28 | eqtri 2768 | 1 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 Oncon0 6395 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 1rcur 20208 algSccascl 21895 mPoly cmpl 21949 Poly1cpl1 22199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-0g 17501 df-mgp 20162 df-ur 20209 df-ascl 21898 df-psr 21952 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-ply1 22204 |
This theorem is referenced by: subrg1ascl 22283 subrg1asclcl 22284 evls1sca 22348 evl1sca 22359 pf1ind 22380 deg1le0 26170 |
Copyright terms: Public domain | W3C validator |