Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version |
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1ascl | ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
2 | eqid 2759 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
3 | eqid 2759 | . . . 4 ⊢ (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅)) | |
4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4 | ply1sca 20962 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
6 | 5 | fveq2d 6655 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
7 | eqid 2759 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
8 | 1on 8112 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1o ∈ On) |
10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
11 | 7, 9, 10 | mplsca 20761 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅))) |
12 | 11 | fveq2d 6655 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅)))) |
13 | eqid 2759 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
14 | 4, 7, 13 | ply1vsca 20935 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))) |
16 | 15 | oveqdr 7171 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦)) |
17 | eqid 2759 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
18 | 7, 4, 17 | ply1mpl1 20966 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1o mPoly 𝑅))) |
20 | fvexd 6666 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 20645 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
22 | fvprc 6643 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
23 | 4, 22 | syl5eq 2806 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
24 | reldmmpl 20740 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc2 7183 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o mPoly 𝑅) = ∅) |
26 | 23, 25 | eqtr4d 2797 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅)) |
27 | 26 | fveq2d 6655 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
28 | 21, 27 | pm2.61i 185 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)) |
29 | 1, 28 | eqtri 2782 | 1 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3407 ∅c0 4221 Oncon0 6162 ‘cfv 6328 (class class class)co 7143 1oc1o 8098 Basecbs 16526 Scalarcsca 16611 ·𝑠 cvsca 16612 1rcur 19304 algSccascl 20602 mPoly cmpl 20653 Poly1cpl1 20886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-fz 12925 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-sca 16624 df-vsca 16625 df-tset 16627 df-ple 16628 df-0g 16758 df-mgp 19293 df-ur 19305 df-ascl 20605 df-psr 20656 df-mpl 20658 df-opsr 20660 df-psr1 20889 df-ply1 20891 |
This theorem is referenced by: subrg1ascl 20968 subrg1asclcl 20969 evls1sca 21027 evl1sca 21038 pf1ind 21059 deg1le0 24796 |
Copyright terms: Public domain | W3C validator |