MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1ascl Structured version   Visualization version   GIF version

Theorem ply1ascl 20418
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
ply1ascl.p 𝑃 = (Poly1𝑅)
ply1ascl.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
ply1ascl 𝐴 = (algSc‘(1o mPoly 𝑅))

Proof of Theorem ply1ascl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1ascl.a . 2 𝐴 = (algSc‘𝑃)
2 eqid 2819 . . . 4 (Scalar‘𝑃) = (Scalar‘𝑃)
3 eqid 2819 . . . 4 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
4 ply1ascl.p . . . . . 6 𝑃 = (Poly1𝑅)
54ply1sca 20413 . . . . 5 (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃))
65fveq2d 6667 . . . 4 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
7 eqid 2819 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
8 1on 8101 . . . . . . 7 1o ∈ On
98a1i 11 . . . . . 6 (𝑅 ∈ V → 1o ∈ On)
10 id 22 . . . . . 6 (𝑅 ∈ V → 𝑅 ∈ V)
117, 9, 10mplsca 20217 . . . . 5 (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅)))
1211fveq2d 6667 . . . 4 (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅))))
13 eqid 2819 . . . . . . 7 ( ·𝑠𝑃) = ( ·𝑠𝑃)
144, 7, 13ply1vsca 20386 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))
1514a1i 11 . . . . 5 (𝑅 ∈ V → ( ·𝑠𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)))
1615oveqdr 7176 . . . 4 ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦))
17 eqid 2819 . . . . . 6 (1r𝑃) = (1r𝑃)
187, 4, 17ply1mpl1 20417 . . . . 5 (1r𝑃) = (1r‘(1o mPoly 𝑅))
1918a1i 11 . . . 4 (𝑅 ∈ V → (1r𝑃) = (1r‘(1o mPoly 𝑅)))
20 fvexd 6678 . . . 4 (𝑅 ∈ V → (1r𝑃) ∈ V)
212, 3, 6, 12, 16, 19, 20asclpropd 20118 . . 3 (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)))
22 fvprc 6656 . . . . . 6 𝑅 ∈ V → (Poly1𝑅) = ∅)
234, 22syl5eq 2866 . . . . 5 𝑅 ∈ V → 𝑃 = ∅)
24 reldmmpl 20199 . . . . . 6 Rel dom mPoly
2524ovprc2 7188 . . . . 5 𝑅 ∈ V → (1o mPoly 𝑅) = ∅)
2623, 25eqtr4d 2857 . . . 4 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅))
2726fveq2d 6667 . . 3 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)))
2821, 27pm2.61i 184 . 2 (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))
291, 28eqtri 2842 1 𝐴 = (algSc‘(1o mPoly 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  c0 4289  Oncon0 6184  cfv 6348  (class class class)co 7148  1oc1o 8087  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  1rcur 19243  algSccascl 20076   mPoly cmpl 20125  Poly1cpl1 20337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-mgp 19232  df-ur 19244  df-ascl 20079  df-psr 20128  df-mpl 20130  df-opsr 20132  df-psr1 20340  df-ply1 20342
This theorem is referenced by:  subrg1ascl  20419  subrg1asclcl  20420  evls1sca  20478  evl1sca  20489  pf1ind  20510  deg1le0  24697
  Copyright terms: Public domain W3C validator