| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version | ||
| Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| ply1ascl | ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅)) | |
| 4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | 4 | ply1sca 22158 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
| 6 | 5 | fveq2d 6821 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 8 | 1on 8392 | . . . . . . 7 ⊢ 1o ∈ On | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1o ∈ On) |
| 10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
| 11 | 7, 9, 10 | mplsca 21943 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅))) |
| 12 | 11 | fveq2d 6821 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅)))) |
| 13 | eqid 2730 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 14 | 4, 7, 13 | ply1vsca 22130 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))) |
| 16 | 15 | oveqdr 7369 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦)) |
| 17 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 18 | 7, 4, 17 | ply1mpl1 22164 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1o mPoly 𝑅))) |
| 20 | fvexd 6832 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
| 21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 21827 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
| 22 | fvprc 6809 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 23 | 4, 22 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
| 24 | reldmmpl 21918 | . . . . . 6 ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc2 7381 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o mPoly 𝑅) = ∅) |
| 26 | 23, 25 | eqtr4d 2768 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅)) |
| 27 | 26 | fveq2d 6821 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
| 28 | 21, 27 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)) |
| 29 | 1, 28 | eqtri 2753 | 1 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 Oncon0 6302 ‘cfv 6477 (class class class)co 7341 1oc1o 8373 Basecbs 17112 Scalarcsca 17156 ·𝑠 cvsca 17157 1rcur 20092 algSccascl 21782 mPoly cmpl 21836 Poly1cpl1 22082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-tset 17172 df-ple 17173 df-0g 17337 df-mgp 20052 df-ur 20093 df-ascl 21785 df-psr 21839 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-ply1 22087 |
| This theorem is referenced by: subrg1ascl 22166 subrg1asclcl 22167 evls1sca 22231 evl1sca 22242 pf1ind 22263 deg1le0 26036 |
| Copyright terms: Public domain | W3C validator |