![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version |
Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1ascl | ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
2 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
3 | eqid 2734 | . . . 4 ⊢ (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅)) | |
4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4 | ply1sca 22269 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
6 | 5 | fveq2d 6910 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
7 | eqid 2734 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
8 | 1on 8516 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1o ∈ On) |
10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
11 | 7, 9, 10 | mplsca 22050 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅))) |
12 | 11 | fveq2d 6910 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅)))) |
13 | eqid 2734 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
14 | 4, 7, 13 | ply1vsca 22241 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))) |
16 | 15 | oveqdr 7458 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦)) |
17 | eqid 2734 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
18 | 7, 4, 17 | ply1mpl1 22275 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1o mPoly 𝑅))) |
20 | fvexd 6921 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 21934 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
22 | fvprc 6898 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
23 | 4, 22 | eqtrid 2786 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
24 | reldmmpl 22025 | . . . . . 6 ⊢ Rel dom mPoly | |
25 | 24 | ovprc2 7470 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o mPoly 𝑅) = ∅) |
26 | 23, 25 | eqtr4d 2777 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅)) |
27 | 26 | fveq2d 6910 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
28 | 21, 27 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)) |
29 | 1, 28 | eqtri 2762 | 1 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 Oncon0 6385 ‘cfv 6562 (class class class)co 7430 1oc1o 8497 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 1rcur 20198 algSccascl 21889 mPoly cmpl 21943 Poly1cpl1 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-0g 17487 df-mgp 20152 df-ur 20199 df-ascl 21892 df-psr 21946 df-mpl 21948 df-opsr 21950 df-psr1 22196 df-ply1 22198 |
This theorem is referenced by: subrg1ascl 22277 subrg1asclcl 22278 evls1sca 22342 evl1sca 22353 pf1ind 22374 deg1le0 26164 |
Copyright terms: Public domain | W3C validator |