| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1ascl | Structured version Visualization version GIF version | ||
| Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| ply1ascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1ascl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| ply1ascl | ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1ascl.a | . 2 ⊢ 𝐴 = (algSc‘𝑃) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅)) | |
| 4 | ply1ascl.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | 4 | ply1sca 22171 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
| 6 | 5 | fveq2d 6844 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 8 | 1on 8423 | . . . . . . 7 ⊢ 1o ∈ On | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ V → 1o ∈ On) |
| 10 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
| 11 | 7, 9, 10 | mplsca 21956 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘(1o mPoly 𝑅))) |
| 12 | 11 | fveq2d 6844 | . . . 4 ⊢ (𝑅 ∈ V → (Base‘𝑅) = (Base‘(Scalar‘(1o mPoly 𝑅)))) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 14 | 4, 7, 13 | ply1vsca 22143 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ V → ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘(1o mPoly 𝑅))) |
| 16 | 15 | oveqdr 7397 | . . . 4 ⊢ ((𝑅 ∈ V ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ V)) → (𝑥( ·𝑠 ‘𝑃)𝑦) = (𝑥( ·𝑠 ‘(1o mPoly 𝑅))𝑦)) |
| 17 | eqid 2729 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 18 | 7, 4, 17 | ply1mpl1 22177 | . . . . 5 ⊢ (1r‘𝑃) = (1r‘(1o mPoly 𝑅)) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) = (1r‘(1o mPoly 𝑅))) |
| 20 | fvexd 6855 | . . . 4 ⊢ (𝑅 ∈ V → (1r‘𝑃) ∈ V) | |
| 21 | 2, 3, 6, 12, 16, 19, 20 | asclpropd 21840 | . . 3 ⊢ (𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
| 22 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 23 | 4, 22 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑃 = ∅) |
| 24 | reldmmpl 21931 | . . . . . 6 ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc2 7409 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o mPoly 𝑅) = ∅) |
| 26 | 23, 25 | eqtr4d 2767 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑃 = (1o mPoly 𝑅)) |
| 27 | 26 | fveq2d 6844 | . . 3 ⊢ (¬ 𝑅 ∈ V → (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅))) |
| 28 | 21, 27 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑃) = (algSc‘(1o mPoly 𝑅)) |
| 29 | 1, 28 | eqtri 2752 | 1 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17156 Scalarcsca 17200 ·𝑠 cvsca 17201 1rcur 20102 algSccascl 21795 mPoly cmpl 21849 Poly1cpl1 22095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-0g 17381 df-mgp 20062 df-ur 20103 df-ascl 21798 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 |
| This theorem is referenced by: subrg1ascl 22179 subrg1asclcl 22180 evls1sca 22244 evl1sca 22255 pf1ind 22276 deg1le0 26050 |
| Copyright terms: Public domain | W3C validator |