MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Visualization version   GIF version

Theorem mplval 21519
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplval.u 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Assertion
Ref Expression
mplval 𝑃 = (𝑆s 𝑈)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑆(𝑓)   𝑈(𝑓)

Proof of Theorem mplval
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 ovexd 7431 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
3 id 22 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
4 oveq12 7405 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
53, 4sylan9eqr 2795 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
6 mplval.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
75, 6eqtr4di 2791 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
87fveq2d 6885 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
9 mplval.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
108, 9eqtr4di 2791 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
11 simplr 768 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6885 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
13 mplval.z . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2791 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
1514breq2d 5156 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑓 finSupp (0g𝑟) ↔ 𝑓 finSupp 0 ))
1610, 15rabeqbidv 3450 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = {𝑓𝐵𝑓 finSupp 0 })
17 mplval.u . . . . . . 7 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
1816, 17eqtr4di 2791 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = 𝑈)
197, 18oveq12d 7414 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
202, 19csbied 3929 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
21 df-mpl 21435 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
22 ovex 7429 . . . 4 (𝑆s 𝑈) ∈ V
2320, 21, 22ovmpoa 7550 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
24 reldmmpl 21518 . . . . . 6 Rel dom mPoly
2524ovprc 7434 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
26 ress0 17175 . . . . 5 (∅ ↾s 𝑈) = ∅
2725, 26eqtr4di 2791 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (∅ ↾s 𝑈))
28 reldmpsr 21438 . . . . . . 7 Rel dom mPwSer
2928ovprc 7434 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
306, 29eqtrid 2785 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3130oveq1d 7411 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑆s 𝑈) = (∅ ↾s 𝑈))
3227, 31eqtr4d 2776 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
3323, 32pm2.61i 182 . 2 (𝐼 mPoly 𝑅) = (𝑆s 𝑈)
341, 33eqtri 2761 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  csb 3891  c0 4320   class class class wbr 5144  cfv 6535  (class class class)co 7396   finSupp cfsupp 9349  Basecbs 17131  s cress 17160  0gc0g 17372   mPwSer cmps 21428   mPoly cmpl 21430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-1cn 11155  ax-addcl 11157
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-nn 12200  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-psr 21433  df-mpl 21435
This theorem is referenced by:  mplbas  21520  mplval2  21524
  Copyright terms: Public domain W3C validator