MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Visualization version   GIF version

Theorem mplval 21949
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplval.u 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Assertion
Ref Expression
mplval 𝑃 = (𝑆s 𝑈)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑆(𝑓)   𝑈(𝑓)

Proof of Theorem mplval
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 ovexd 7440 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
3 id 22 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
4 oveq12 7414 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
53, 4sylan9eqr 2792 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
6 mplval.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
75, 6eqtr4di 2788 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
87fveq2d 6880 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
9 mplval.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
108, 9eqtr4di 2788 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
11 simplr 768 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6880 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
13 mplval.z . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2788 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
1514breq2d 5131 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑓 finSupp (0g𝑟) ↔ 𝑓 finSupp 0 ))
1610, 15rabeqbidv 3434 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = {𝑓𝐵𝑓 finSupp 0 })
17 mplval.u . . . . . . 7 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
1816, 17eqtr4di 2788 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = 𝑈)
197, 18oveq12d 7423 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
202, 19csbied 3910 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
21 df-mpl 21871 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
22 ovex 7438 . . . 4 (𝑆s 𝑈) ∈ V
2320, 21, 22ovmpoa 7562 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
24 reldmmpl 21948 . . . . . 6 Rel dom mPoly
2524ovprc 7443 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
26 ress0 17264 . . . . 5 (∅ ↾s 𝑈) = ∅
2725, 26eqtr4di 2788 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (∅ ↾s 𝑈))
28 reldmpsr 21874 . . . . . . 7 Rel dom mPwSer
2928ovprc 7443 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
306, 29eqtrid 2782 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3130oveq1d 7420 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑆s 𝑈) = (∅ ↾s 𝑈))
3227, 31eqtr4d 2773 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
3323, 32pm2.61i 182 . 2 (𝐼 mPoly 𝑅) = (𝑆s 𝑈)
341, 33eqtri 2758 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  csb 3874  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405   finSupp cfsupp 9373  Basecbs 17228  s cress 17251  0gc0g 17453   mPwSer cmps 21864   mPoly cmpl 21866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-psr 21869  df-mpl 21871
This theorem is referenced by:  mplbas  21950  mplval2  21956
  Copyright terms: Public domain W3C validator