MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Visualization version   GIF version

Theorem mplval 21918
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplval.u 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Assertion
Ref Expression
mplval 𝑃 = (𝑆s 𝑈)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑆(𝑓)   𝑈(𝑓)

Proof of Theorem mplval
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 ovexd 7449 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
3 id 22 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
4 oveq12 7423 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
53, 4sylan9eqr 2789 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
6 mplval.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
75, 6eqtr4di 2785 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
87fveq2d 6895 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
9 mplval.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
108, 9eqtr4di 2785 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
11 simplr 768 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6895 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
13 mplval.z . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2785 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
1514breq2d 5154 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑓 finSupp (0g𝑟) ↔ 𝑓 finSupp 0 ))
1610, 15rabeqbidv 3444 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = {𝑓𝐵𝑓 finSupp 0 })
17 mplval.u . . . . . . 7 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
1816, 17eqtr4di 2785 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = 𝑈)
197, 18oveq12d 7432 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
202, 19csbied 3927 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
21 df-mpl 21831 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
22 ovex 7447 . . . 4 (𝑆s 𝑈) ∈ V
2320, 21, 22ovmpoa 7570 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
24 reldmmpl 21917 . . . . . 6 Rel dom mPoly
2524ovprc 7452 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
26 ress0 17215 . . . . 5 (∅ ↾s 𝑈) = ∅
2725, 26eqtr4di 2785 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (∅ ↾s 𝑈))
28 reldmpsr 21834 . . . . . . 7 Rel dom mPwSer
2928ovprc 7452 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
306, 29eqtrid 2779 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3130oveq1d 7429 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑆s 𝑈) = (∅ ↾s 𝑈))
3227, 31eqtr4d 2770 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
3323, 32pm2.61i 182 . 2 (𝐼 mPoly 𝑅) = (𝑆s 𝑈)
341, 33eqtri 2755 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1534  wcel 2099  {crab 3427  Vcvv 3469  csb 3889  c0 4318   class class class wbr 5142  cfv 6542  (class class class)co 7414   finSupp cfsupp 9377  Basecbs 17171  s cress 17200  0gc0g 17412   mPwSer cmps 21824   mPoly cmpl 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-1cn 11188  ax-addcl 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12235  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-psr 21829  df-mpl 21831
This theorem is referenced by:  mplbas  21919  mplval2  21925
  Copyright terms: Public domain W3C validator