Step | Hyp | Ref
| Expression |
1 | | mplval.p |
. 2
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
2 | | ovexd 7248 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V) |
3 | | id 22 |
. . . . . . . 8
⊢ (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟)) |
4 | | oveq12 7222 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅)) |
5 | 3, 4 | sylan9eqr 2800 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅)) |
6 | | mplval.s |
. . . . . . 7
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
7 | 5, 6 | eqtr4di 2796 |
. . . . . 6
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆) |
8 | 7 | fveq2d 6721 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆)) |
9 | | mplval.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) |
10 | 8, 9 | eqtr4di 2796 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵) |
11 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅) |
12 | 11 | fveq2d 6721 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g‘𝑟) = (0g‘𝑅)) |
13 | | mplval.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g‘𝑟) = 0 ) |
15 | 14 | breq2d 5065 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑓 finSupp (0g‘𝑟) ↔ 𝑓 finSupp 0 )) |
16 | 10, 15 | rabeqbidv 3396 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)} = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
17 | | mplval.u |
. . . . . . 7
⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
18 | 16, 17 | eqtr4di 2796 |
. . . . . 6
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)} = 𝑈) |
19 | 7, 18 | oveq12d 7231 |
. . . . 5
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)}) = (𝑆 ↾s 𝑈)) |
20 | 2, 19 | csbied 3849 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)}) = (𝑆 ↾s 𝑈)) |
21 | | df-mpl 20870 |
. . . 4
⊢ mPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋(𝑖 mPwSer
𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) |
22 | | ovex 7246 |
. . . 4
⊢ (𝑆 ↾s 𝑈) ∈ V |
23 | 20, 21, 22 | ovmpoa 7364 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆 ↾s 𝑈)) |
24 | | reldmmpl 20952 |
. . . . . 6
⊢ Rel dom
mPoly |
25 | 24 | ovprc 7251 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅) |
26 | | ress0 16795 |
. . . . 5
⊢ (∅
↾s 𝑈) =
∅ |
27 | 25, 26 | eqtr4di 2796 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (∅ ↾s 𝑈)) |
28 | | reldmpsr 20873 |
. . . . . . 7
⊢ Rel dom
mPwSer |
29 | 28 | ovprc 7251 |
. . . . . 6
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
30 | 6, 29 | syl5eq 2790 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅) |
31 | 30 | oveq1d 7228 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ↾s 𝑈) = (∅ ↾s
𝑈)) |
32 | 27, 31 | eqtr4d 2780 |
. . 3
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆 ↾s 𝑈)) |
33 | 23, 32 | pm2.61i 185 |
. 2
⊢ (𝐼 mPoly 𝑅) = (𝑆 ↾s 𝑈) |
34 | 1, 33 | eqtri 2765 |
1
⊢ 𝑃 = (𝑆 ↾s 𝑈) |