MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Visualization version   GIF version

Theorem mplval 21924
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplval.u 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Assertion
Ref Expression
mplval 𝑃 = (𝑆s 𝑈)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑆(𝑓)   𝑈(𝑓)

Proof of Theorem mplval
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 ovexd 7381 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
3 id 22 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
4 oveq12 7355 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
53, 4sylan9eqr 2788 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
6 mplval.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
75, 6eqtr4di 2784 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
87fveq2d 6826 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
9 mplval.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
108, 9eqtr4di 2784 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
11 simplr 768 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6826 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
13 mplval.z . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2784 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
1514breq2d 5103 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑓 finSupp (0g𝑟) ↔ 𝑓 finSupp 0 ))
1610, 15rabeqbidv 3413 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = {𝑓𝐵𝑓 finSupp 0 })
17 mplval.u . . . . . . 7 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
1816, 17eqtr4di 2784 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)} = 𝑈)
197, 18oveq12d 7364 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
202, 19csbied 3886 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}) = (𝑆s 𝑈))
21 df-mpl 21846 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
22 ovex 7379 . . . 4 (𝑆s 𝑈) ∈ V
2320, 21, 22ovmpoa 7501 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
24 reldmmpl 21923 . . . . . 6 Rel dom mPoly
2524ovprc 7384 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
26 ress0 17151 . . . . 5 (∅ ↾s 𝑈) = ∅
2725, 26eqtr4di 2784 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (∅ ↾s 𝑈))
28 reldmpsr 21849 . . . . . . 7 Rel dom mPwSer
2928ovprc 7384 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
306, 29eqtrid 2778 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3130oveq1d 7361 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑆s 𝑈) = (∅ ↾s 𝑈))
3227, 31eqtr4d 2769 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
3323, 32pm2.61i 182 . 2 (𝐼 mPoly 𝑅) = (𝑆s 𝑈)
341, 33eqtri 2754 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  csb 3850  c0 4283   class class class wbr 5091  cfv 6481  (class class class)co 7346   finSupp cfsupp 9245  Basecbs 17117  s cress 17138  0gc0g 17340   mPwSer cmps 21839   mPoly cmpl 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-psr 21844  df-mpl 21846
This theorem is referenced by:  mplbas  21925  mplval2  21931
  Copyright terms: Public domain W3C validator