Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvsca Structured version   Visualization version   GIF version

Theorem resvsca 30964
 Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvsca (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))

Proof of Theorem resvsca
StepHypRef Expression
1 resvsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
21fvexi 6660 . . . . . . 7 𝐹 ∈ V
3 eqid 2798 . . . . . . . 8 (𝐹s 𝐴) = (𝐹s 𝐴)
4 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
53, 4ressid2 16547 . . . . . . 7 ((𝐵𝐴𝐹 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
62, 5mp3an2 1446 . . . . . 6 ((𝐵𝐴𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
763adant2 1128 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
8 resvsca.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
98, 1, 4resvid2 30962 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
109fveq2d 6650 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘𝑊))
111, 7, 103eqtr4a 2859 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
12113expib 1119 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
13 simp2 1134 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
14 ovex 7169 . . . . . 6 (𝐹s 𝐴) ∈ V
15 scaid 16628 . . . . . . 7 Scalar = Slot (Scalar‘ndx)
1615setsid 16533 . . . . . 6 ((𝑊 ∈ V ∧ (𝐹s 𝐴) ∈ V) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
1713, 14, 16sylancl 589 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
188, 1, 4resvval2 30963 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
1918fveq2d 6650 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
2017, 19eqtr4d 2836 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
21203expib 1119 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
2212, 21pm2.61i 185 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
23 0fv 6685 . . . . 5 (∅‘(Scalar‘ndx)) = ∅
24 0ex 5176 . . . . . 6 ∅ ∈ V
2524, 15strfvn 16500 . . . . 5 (Scalar‘∅) = (∅‘(Scalar‘ndx))
26 ress0 16553 . . . . 5 (∅ ↾s 𝐴) = ∅
2723, 25, 263eqtr4ri 2832 . . . 4 (∅ ↾s 𝐴) = (Scalar‘∅)
28 fvprc 6639 . . . . . 6 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
291, 28syl5eq 2845 . . . . 5 𝑊 ∈ V → 𝐹 = ∅)
3029oveq1d 7151 . . . 4 𝑊 ∈ V → (𝐹s 𝐴) = (∅ ↾s 𝐴))
31 reldmresv 30960 . . . . . . 7 Rel dom ↾v
3231ovprc1 7175 . . . . . 6 𝑊 ∈ V → (𝑊v 𝐴) = ∅)
338, 32syl5eq 2845 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3433fveq2d 6650 . . . 4 𝑊 ∈ V → (Scalar‘𝑅) = (Scalar‘∅))
3527, 30, 343eqtr4a 2859 . . 3 𝑊 ∈ V → (𝐹s 𝐴) = (Scalar‘𝑅))
3635adantr 484 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
3722, 36pm2.61ian 811 1 (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  ⟨cop 4531  ‘cfv 6325  (class class class)co 7136  ndxcnx 16475   sSet csts 16476  Basecbs 16478   ↾s cress 16479  Scalarcsca 16563   ↾v cresv 30958 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-1cn 10587  ax-addcl 10589 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-sca 16576  df-resv 30959 This theorem is referenced by:  xrge0slmod  30978  sitgaddlemb  31731
 Copyright terms: Public domain W3C validator