Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvsca Structured version   Visualization version   GIF version

Theorem resvsca 30898
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvsca (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))

Proof of Theorem resvsca
StepHypRef Expression
1 resvsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
21fvexi 6678 . . . . . . 7 𝐹 ∈ V
3 eqid 2821 . . . . . . . 8 (𝐹s 𝐴) = (𝐹s 𝐴)
4 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
53, 4ressid2 16546 . . . . . . 7 ((𝐵𝐴𝐹 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
62, 5mp3an2 1445 . . . . . 6 ((𝐵𝐴𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
763adant2 1127 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
8 resvsca.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
98, 1, 4resvid2 30896 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
109fveq2d 6668 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘𝑊))
111, 7, 103eqtr4a 2882 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
12113expib 1118 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
13 simp2 1133 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
14 ovex 7183 . . . . . 6 (𝐹s 𝐴) ∈ V
15 scaid 16627 . . . . . . 7 Scalar = Slot (Scalar‘ndx)
1615setsid 16532 . . . . . 6 ((𝑊 ∈ V ∧ (𝐹s 𝐴) ∈ V) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
1713, 14, 16sylancl 588 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
188, 1, 4resvval2 30897 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
1918fveq2d 6668 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
2017, 19eqtr4d 2859 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
21203expib 1118 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
2212, 21pm2.61i 184 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
23 0fv 6703 . . . . 5 (∅‘(Scalar‘ndx)) = ∅
24 0ex 5203 . . . . . 6 ∅ ∈ V
2524, 15strfvn 16499 . . . . 5 (Scalar‘∅) = (∅‘(Scalar‘ndx))
26 ress0 16552 . . . . 5 (∅ ↾s 𝐴) = ∅
2723, 25, 263eqtr4ri 2855 . . . 4 (∅ ↾s 𝐴) = (Scalar‘∅)
28 fvprc 6657 . . . . . 6 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
291, 28syl5eq 2868 . . . . 5 𝑊 ∈ V → 𝐹 = ∅)
3029oveq1d 7165 . . . 4 𝑊 ∈ V → (𝐹s 𝐴) = (∅ ↾s 𝐴))
31 reldmresv 30894 . . . . . . 7 Rel dom ↾v
3231ovprc1 7189 . . . . . 6 𝑊 ∈ V → (𝑊v 𝐴) = ∅)
338, 32syl5eq 2868 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3433fveq2d 6668 . . . 4 𝑊 ∈ V → (Scalar‘𝑅) = (Scalar‘∅))
3527, 30, 343eqtr4a 2882 . . 3 𝑊 ∈ V → (𝐹s 𝐴) = (Scalar‘𝑅))
3635adantr 483 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
3722, 36pm2.61ian 810 1 (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  c0 4290  cop 4566  cfv 6349  (class class class)co 7150  ndxcnx 16474   sSet csts 16475  Basecbs 16477  s cress 16478  Scalarcsca 16562  v cresv 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-1cn 10589  ax-addcl 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-sca 16575  df-resv 30893
This theorem is referenced by:  xrge0slmod  30912  sitgaddlemb  31601
  Copyright terms: Public domain W3C validator