Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvsca Structured version   Visualization version   GIF version

Theorem resvsca 31431
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvsca (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))

Proof of Theorem resvsca
StepHypRef Expression
1 resvsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
21fvexi 6770 . . . . . . 7 𝐹 ∈ V
3 eqid 2738 . . . . . . . 8 (𝐹s 𝐴) = (𝐹s 𝐴)
4 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
53, 4ressid2 16871 . . . . . . 7 ((𝐵𝐴𝐹 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
62, 5mp3an2 1447 . . . . . 6 ((𝐵𝐴𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
763adant2 1129 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
8 resvsca.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
98, 1, 4resvid2 31429 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
109fveq2d 6760 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘𝑊))
111, 7, 103eqtr4a 2805 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
12113expib 1120 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
13 simp2 1135 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
14 ovex 7288 . . . . . 6 (𝐹s 𝐴) ∈ V
15 scaid 16951 . . . . . . 7 Scalar = Slot (Scalar‘ndx)
1615setsid 16837 . . . . . 6 ((𝑊 ∈ V ∧ (𝐹s 𝐴) ∈ V) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
1713, 14, 16sylancl 585 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
188, 1, 4resvval2 31430 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
1918fveq2d 6760 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
2017, 19eqtr4d 2781 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
21203expib 1120 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
2212, 21pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
23 0fv 6795 . . . . 5 (∅‘(Scalar‘ndx)) = ∅
24 0ex 5226 . . . . . 6 ∅ ∈ V
2524, 15strfvn 16815 . . . . 5 (Scalar‘∅) = (∅‘(Scalar‘ndx))
26 ress0 16879 . . . . 5 (∅ ↾s 𝐴) = ∅
2723, 25, 263eqtr4ri 2777 . . . 4 (∅ ↾s 𝐴) = (Scalar‘∅)
28 fvprc 6748 . . . . . 6 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
291, 28syl5eq 2791 . . . . 5 𝑊 ∈ V → 𝐹 = ∅)
3029oveq1d 7270 . . . 4 𝑊 ∈ V → (𝐹s 𝐴) = (∅ ↾s 𝐴))
31 reldmresv 31427 . . . . . . 7 Rel dom ↾v
3231ovprc1 7294 . . . . . 6 𝑊 ∈ V → (𝑊v 𝐴) = ∅)
338, 32syl5eq 2791 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3433fveq2d 6760 . . . 4 𝑊 ∈ V → (Scalar‘𝑅) = (Scalar‘∅))
3527, 30, 343eqtr4a 2805 . . 3 𝑊 ∈ V → (𝐹s 𝐴) = (Scalar‘𝑅))
3635adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
3722, 36pm2.61ian 808 1 (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867  Scalarcsca 16891  v cresv 31425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-sca 16904  df-resv 31426
This theorem is referenced by:  xrge0slmod  31450  sitgaddlemb  32215
  Copyright terms: Public domain W3C validator