Proof of Theorem resvsca
Step | Hyp | Ref
| Expression |
1 | | resvsca.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
2 | 1 | fvexi 6770 |
. . . . . . 7
⊢ 𝐹 ∈ V |
3 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) |
4 | | resvsca.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐹) |
5 | 3, 4 | ressid2 16871 |
. . . . . . 7
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = 𝐹) |
6 | 2, 5 | mp3an2 1447 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = 𝐹) |
7 | 6 | 3adant2 1129 |
. . . . 5
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = 𝐹) |
8 | | resvsca.r |
. . . . . . 7
⊢ 𝑅 = (𝑊 ↾v 𝐴) |
9 | 8, 1, 4 | resvid2 31429 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
10 | 9 | fveq2d 6760 |
. . . . 5
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Scalar‘𝑅) = (Scalar‘𝑊)) |
11 | 1, 7, 10 | 3eqtr4a 2805 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |
12 | 11 | 3expib 1120 |
. . 3
⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅))) |
13 | | simp2 1135 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) |
14 | | ovex 7288 |
. . . . . 6
⊢ (𝐹 ↾s 𝐴) ∈ V |
15 | | scaid 16951 |
. . . . . . 7
⊢ Scalar =
Slot (Scalar‘ndx) |
16 | 15 | setsid 16837 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ (𝐹 ↾s 𝐴) ∈ V) → (𝐹 ↾s 𝐴) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx),
(𝐹 ↾s
𝐴)〉))) |
17 | 13, 14, 16 | sylancl 585 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
18 | 8, 1, 4 | resvval2 31430 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) |
19 | 18 | fveq2d 6760 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Scalar‘𝑅) = (Scalar‘(𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
20 | 17, 19 | eqtr4d 2781 |
. . . 4
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |
21 | 20 | 3expib 1120 |
. . 3
⊢ (¬
𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅))) |
22 | 12, 21 | pm2.61i 182 |
. 2
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |
23 | | 0fv 6795 |
. . . . 5
⊢
(∅‘(Scalar‘ndx)) = ∅ |
24 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
25 | 24, 15 | strfvn 16815 |
. . . . 5
⊢
(Scalar‘∅) =
(∅‘(Scalar‘ndx)) |
26 | | ress0 16879 |
. . . . 5
⊢ (∅
↾s 𝐴) =
∅ |
27 | 23, 25, 26 | 3eqtr4ri 2777 |
. . . 4
⊢ (∅
↾s 𝐴) =
(Scalar‘∅) |
28 | | fvprc 6748 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Scalar‘𝑊) =
∅) |
29 | 1, 28 | syl5eq 2791 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝐹 = ∅) |
30 | 29 | oveq1d 7270 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝐹 ↾s 𝐴) = (∅ ↾s
𝐴)) |
31 | | reldmresv 31427 |
. . . . . . 7
⊢ Rel dom
↾v |
32 | 31 | ovprc1 7294 |
. . . . . 6
⊢ (¬
𝑊 ∈ V → (𝑊 ↾v 𝐴) = ∅) |
33 | 8, 32 | syl5eq 2791 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑅 = ∅) |
34 | 33 | fveq2d 6760 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(Scalar‘𝑅) =
(Scalar‘∅)) |
35 | 27, 30, 34 | 3eqtr4a 2805 |
. . 3
⊢ (¬
𝑊 ∈ V → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |
36 | 35 | adantr 480 |
. 2
⊢ ((¬
𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |
37 | 22, 36 | pm2.61ian 808 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) |