Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvsca Structured version   Visualization version   GIF version

Theorem resvsca 31529
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvsca (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))

Proof of Theorem resvsca
StepHypRef Expression
1 resvsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
21fvexi 6788 . . . . . . 7 𝐹 ∈ V
3 eqid 2738 . . . . . . . 8 (𝐹s 𝐴) = (𝐹s 𝐴)
4 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
53, 4ressid2 16945 . . . . . . 7 ((𝐵𝐴𝐹 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
62, 5mp3an2 1448 . . . . . 6 ((𝐵𝐴𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
763adant2 1130 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = 𝐹)
8 resvsca.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
98, 1, 4resvid2 31527 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
109fveq2d 6778 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘𝑊))
111, 7, 103eqtr4a 2804 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
12113expib 1121 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
13 simp2 1136 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
14 ovex 7308 . . . . . 6 (𝐹s 𝐴) ∈ V
15 scaid 17025 . . . . . . 7 Scalar = Slot (Scalar‘ndx)
1615setsid 16909 . . . . . 6 ((𝑊 ∈ V ∧ (𝐹s 𝐴) ∈ V) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
1713, 14, 16sylancl 586 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
188, 1, 4resvval2 31528 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
1918fveq2d 6778 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Scalar‘𝑅) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
2017, 19eqtr4d 2781 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
21203expib 1121 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅)))
2212, 21pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
23 0fv 6813 . . . . 5 (∅‘(Scalar‘ndx)) = ∅
24 0ex 5231 . . . . . 6 ∅ ∈ V
2524, 15strfvn 16887 . . . . 5 (Scalar‘∅) = (∅‘(Scalar‘ndx))
26 ress0 16953 . . . . 5 (∅ ↾s 𝐴) = ∅
2723, 25, 263eqtr4ri 2777 . . . 4 (∅ ↾s 𝐴) = (Scalar‘∅)
28 fvprc 6766 . . . . . 6 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
291, 28eqtrid 2790 . . . . 5 𝑊 ∈ V → 𝐹 = ∅)
3029oveq1d 7290 . . . 4 𝑊 ∈ V → (𝐹s 𝐴) = (∅ ↾s 𝐴))
31 reldmresv 31525 . . . . . . 7 Rel dom ↾v
3231ovprc1 7314 . . . . . 6 𝑊 ∈ V → (𝑊v 𝐴) = ∅)
338, 32eqtrid 2790 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3433fveq2d 6778 . . . 4 𝑊 ∈ V → (Scalar‘𝑅) = (Scalar‘∅))
3527, 30, 343eqtr4a 2804 . . 3 𝑊 ∈ V → (𝐹s 𝐴) = (Scalar‘𝑅))
3635adantr 481 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐹s 𝐴) = (Scalar‘𝑅))
3722, 36pm2.61ian 809 1 (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  s cress 16941  Scalarcsca 16965  v cresv 31523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-sca 16978  df-resv 31524
This theorem is referenced by:  xrge0slmod  31548  sitgaddlemb  32315
  Copyright terms: Public domain W3C validator