Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlem | Structured version Visualization version GIF version |
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
resvlem.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvlem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resvlem.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
resvlem.n | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
Ref | Expression |
---|---|
resvlem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvlem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resvlem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
3 | eqid 2737 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2737 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
5 | 2, 3, 4 | resvid2 31821 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
6 | 5 | fveq2d 6834 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
7 | 6 | 3expib 1122 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
8 | 2, 3, 4 | resvval2 31822 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
9 | 8 | fveq2d 6834 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
10 | resvlem.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
11 | resvlem.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
12 | 10, 11 | setsnid 17008 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
13 | 9, 12 | eqtr4di 2795 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
14 | 13 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
15 | 7, 14 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
16 | 10 | str0 16988 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
17 | 16 | eqcomi 2746 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
18 | reldmresv 31819 | . . . . . 6 ⊢ Rel dom ↾v | |
19 | 17, 2, 18 | oveqprc 16991 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
20 | 19 | eqcomd 2743 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | adantr 482 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | 15, 21 | pm2.61ian 810 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | 1, 22 | eqtr4id 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 Vcvv 3442 ⊆ wss 3902 ∅c0 4274 〈cop 4584 ‘cfv 6484 (class class class)co 7342 sSet csts 16962 Slot cslot 16980 ndxcnx 16992 Basecbs 17010 ↾s cress 17039 Scalarcsca 17063 ↾v cresv 31817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-res 5637 df-iota 6436 df-fun 6486 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-sets 16963 df-slot 16981 df-resv 31818 |
This theorem is referenced by: resvbas 31826 resvplusg 31828 resvvsca 31830 resvmulr 31832 |
Copyright terms: Public domain | W3C validator |