Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvlem Structured version   Visualization version   GIF version

Theorem resvlem 31530
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
resvlem.r 𝑅 = (𝑊v 𝐴)
resvlem.e 𝐶 = (𝐸𝑊)
resvlem.f 𝐸 = Slot (𝐸‘ndx)
resvlem.n (𝐸‘ndx) ≠ (Scalar‘ndx)
Assertion
Ref Expression
resvlem (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resvlem
StepHypRef Expression
1 resvlem.e . 2 𝐶 = (𝐸𝑊)
2 resvlem.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
3 eqid 2738 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
52, 3, 4resvid2 31527 . . . . . 6 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
65fveq2d 6778 . . . . 5 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
763expib 1121 . . . 4 ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
82, 3, 4resvval2 31528 . . . . . . 7 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
98fveq2d 6778 . . . . . 6 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩)))
10 resvlem.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
11 resvlem.n . . . . . . 7 (𝐸‘ndx) ≠ (Scalar‘ndx)
1210, 11setsnid 16910 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
139, 12eqtr4di 2796 . . . . 5 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
14133expib 1121 . . . 4 (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
157, 14pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
1610str0 16890 . . . . . . 7 ∅ = (𝐸‘∅)
1716eqcomi 2747 . . . . . 6 (𝐸‘∅) = ∅
18 reldmresv 31525 . . . . . 6 Rel dom ↾v
1917, 2, 18oveqprc 16893 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
2019eqcomd 2744 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2120adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2215, 21pm2.61ian 809 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
231, 22eqtr4id 2797 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  c0 4256  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912  s cress 16941  Scalarcsca 16965  v cresv 31523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865  df-slot 16883  df-resv 31524
This theorem is referenced by:  resvbas  31532  resvplusg  31534  resvvsca  31536  resvmulr  31538
  Copyright terms: Public domain W3C validator