![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlem | Structured version Visualization version GIF version |
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
resvlem.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvlem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resvlem.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
resvlem.n | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
Ref | Expression |
---|---|
resvlem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvlem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resvlem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2740 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
5 | 2, 3, 4 | resvid2 33319 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
6 | 5 | fveq2d 6924 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
7 | 6 | 3expib 1122 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
8 | 2, 3, 4 | resvval2 33320 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
9 | 8 | fveq2d 6924 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
10 | resvlem.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
11 | resvlem.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
12 | 10, 11 | setsnid 17256 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
13 | 9, 12 | eqtr4di 2798 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
14 | 13 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
15 | 7, 14 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
16 | 10 | str0 17236 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
17 | 16 | eqcomi 2749 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
18 | reldmresv 33317 | . . . . . 6 ⊢ Rel dom ↾v | |
19 | 17, 2, 18 | oveqprc 17239 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
20 | 19 | eqcomd 2746 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | 15, 21 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | 1, 22 | eqtr4id 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 ↾v cresv 33315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 df-resv 33316 |
This theorem is referenced by: resvbas 33324 resvplusg 33326 resvvsca 33328 resvmulr 33330 |
Copyright terms: Public domain | W3C validator |