Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvlem Structured version   Visualization version   GIF version

Theorem resvlem 33337
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
resvlem.r 𝑅 = (𝑊v 𝐴)
resvlem.e 𝐶 = (𝐸𝑊)
resvlem.f 𝐸 = Slot (𝐸‘ndx)
resvlem.n (𝐸‘ndx) ≠ (Scalar‘ndx)
Assertion
Ref Expression
resvlem (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resvlem
StepHypRef Expression
1 resvlem.e . 2 𝐶 = (𝐸𝑊)
2 resvlem.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
3 eqid 2735 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2735 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
52, 3, 4resvid2 33334 . . . . . 6 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
65fveq2d 6911 . . . . 5 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
763expib 1121 . . . 4 ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
82, 3, 4resvval2 33335 . . . . . . 7 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
98fveq2d 6911 . . . . . 6 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩)))
10 resvlem.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
11 resvlem.n . . . . . . 7 (𝐸‘ndx) ≠ (Scalar‘ndx)
1210, 11setsnid 17243 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
139, 12eqtr4di 2793 . . . . 5 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
14133expib 1121 . . . 4 (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
157, 14pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
1610str0 17223 . . . . . . 7 ∅ = (𝐸‘∅)
1716eqcomi 2744 . . . . . 6 (𝐸‘∅) = ∅
18 reldmresv 33332 . . . . . 6 Rel dom ↾v
1917, 2, 18oveqprc 17226 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
2019eqcomd 2741 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2120adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2215, 21pm2.61ian 812 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
231, 22eqtr4id 2794 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  cop 4637  cfv 6563  (class class class)co 7431   sSet csts 17197  Slot cslot 17215  ndxcnx 17227  Basecbs 17245  s cress 17274  Scalarcsca 17301  v cresv 33330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17198  df-slot 17216  df-resv 33331
This theorem is referenced by:  resvbas  33339  resvplusg  33341  resvvsca  33343  resvmulr  33345
  Copyright terms: Public domain W3C validator