Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlem | Structured version Visualization version GIF version |
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
resvlem.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvlem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resvlem.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
resvlem.n | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
Ref | Expression |
---|---|
resvlem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvlem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resvlem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
5 | 2, 3, 4 | resvid2 31429 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
6 | 5 | fveq2d 6760 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
7 | 6 | 3expib 1120 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
8 | 2, 3, 4 | resvval2 31430 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
9 | 8 | fveq2d 6760 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
10 | resvlem.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
11 | resvlem.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
12 | 10, 11 | setsnid 16838 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
13 | 9, 12 | eqtr4di 2797 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
14 | 13 | 3expib 1120 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
15 | 7, 14 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
16 | 10 | str0 16818 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
17 | 16 | eqcomi 2747 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
18 | reldmresv 31427 | . . . . . 6 ⊢ Rel dom ↾v | |
19 | 17, 2, 18 | oveqprc 16821 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
20 | 19 | eqcomd 2744 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | 15, 21 | pm2.61ian 808 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | 1, 22 | eqtr4id 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 Slot cslot 16810 ndxcnx 16822 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 ↾v cresv 31425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 df-slot 16811 df-resv 31426 |
This theorem is referenced by: resvbas 31434 resvplusg 31436 resvvsca 31438 resvmulr 31440 |
Copyright terms: Public domain | W3C validator |