Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvlem Structured version   Visualization version   GIF version

Theorem resvlem 33305
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
resvlem.r 𝑅 = (𝑊v 𝐴)
resvlem.e 𝐶 = (𝐸𝑊)
resvlem.f 𝐸 = Slot (𝐸‘ndx)
resvlem.n (𝐸‘ndx) ≠ (Scalar‘ndx)
Assertion
Ref Expression
resvlem (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resvlem
StepHypRef Expression
1 resvlem.e . 2 𝐶 = (𝐸𝑊)
2 resvlem.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
3 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
52, 3, 4resvid2 33302 . . . . . 6 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
65fveq2d 6862 . . . . 5 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
763expib 1122 . . . 4 ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
82, 3, 4resvval2 33303 . . . . . . 7 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
98fveq2d 6862 . . . . . 6 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩)))
10 resvlem.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
11 resvlem.n . . . . . . 7 (𝐸‘ndx) ≠ (Scalar‘ndx)
1210, 11setsnid 17178 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
139, 12eqtr4di 2782 . . . . 5 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
14133expib 1122 . . . 4 (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
157, 14pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
1610str0 17159 . . . . . . 7 ∅ = (𝐸‘∅)
1716eqcomi 2738 . . . . . 6 (𝐸‘∅) = ∅
18 reldmresv 33300 . . . . . 6 Rel dom ↾v
1917, 2, 18oveqprc 17162 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
2019eqcomd 2735 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2120adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2215, 21pm2.61ian 811 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
231, 22eqtr4id 2783 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  cop 4595  cfv 6511  (class class class)co 7387   sSet csts 17133  Slot cslot 17151  ndxcnx 17163  Basecbs 17179  s cress 17200  Scalarcsca 17223  v cresv 33298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sets 17134  df-slot 17152  df-resv 33299
This theorem is referenced by:  resvbas  33306  resvplusg  33307  resvvsca  33308  resvmulr  33309
  Copyright terms: Public domain W3C validator