Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvlem Structured version   Visualization version   GIF version

Theorem resvlem 32947
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
resvlem.r 𝑅 = (π‘Š β†Ύv 𝐴)
resvlem.e 𝐢 = (πΈβ€˜π‘Š)
resvlem.f 𝐸 = Slot (πΈβ€˜ndx)
resvlem.n (πΈβ€˜ndx) β‰  (Scalarβ€˜ndx)
Assertion
Ref Expression
resvlem (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))

Proof of Theorem resvlem
StepHypRef Expression
1 resvlem.e . 2 𝐢 = (πΈβ€˜π‘Š)
2 resvlem.r . . . . . . 7 𝑅 = (π‘Š β†Ύv 𝐴)
3 eqid 2726 . . . . . . 7 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
4 eqid 2726 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
52, 3, 4resvid2 32944 . . . . . 6 (((Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = π‘Š)
65fveq2d 6888 . . . . 5 (((Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
763expib 1119 . . . 4 ((Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
82, 3, 4resvval2 32945 . . . . . . 7 ((Β¬ (Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = (π‘Š sSet ⟨(Scalarβ€˜ndx), ((Scalarβ€˜π‘Š) β†Ύs 𝐴)⟩))
98fveq2d 6888 . . . . . 6 ((Β¬ (Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜(π‘Š sSet ⟨(Scalarβ€˜ndx), ((Scalarβ€˜π‘Š) β†Ύs 𝐴)⟩)))
10 resvlem.f . . . . . . 7 𝐸 = Slot (πΈβ€˜ndx)
11 resvlem.n . . . . . . 7 (πΈβ€˜ndx) β‰  (Scalarβ€˜ndx)
1210, 11setsnid 17148 . . . . . 6 (πΈβ€˜π‘Š) = (πΈβ€˜(π‘Š sSet ⟨(Scalarβ€˜ndx), ((Scalarβ€˜π‘Š) β†Ύs 𝐴)⟩))
139, 12eqtr4di 2784 . . . . 5 ((Β¬ (Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
14133expib 1119 . . . 4 (Β¬ (Baseβ€˜(Scalarβ€˜π‘Š)) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
157, 14pm2.61i 182 . . 3 ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
1610str0 17128 . . . . . . 7 βˆ… = (πΈβ€˜βˆ…)
1716eqcomi 2735 . . . . . 6 (πΈβ€˜βˆ…) = βˆ…
18 reldmresv 32942 . . . . . 6 Rel dom β†Ύv
1917, 2, 18oveqprc 17131 . . . . 5 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π‘…))
2019eqcomd 2732 . . . 4 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2120adantr 480 . . 3 ((Β¬ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2215, 21pm2.61ian 809 . 2 (𝐴 ∈ 𝑉 β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
231, 22eqtr4id 2785 1 (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  Vcvv 3468   βŠ† wss 3943  βˆ…c0 4317  βŸ¨cop 4629  β€˜cfv 6536  (class class class)co 7404   sSet csts 17102  Slot cslot 17120  ndxcnx 17132  Basecbs 17150   β†Ύs cress 17179  Scalarcsca 17206   β†Ύv cresv 32940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-sets 17103  df-slot 17121  df-resv 32941
This theorem is referenced by:  resvbas  32949  resvplusg  32951  resvvsca  32953  resvmulr  32955
  Copyright terms: Public domain W3C validator