| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlem | Structured version Visualization version GIF version | ||
| Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| resvlem.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
| resvlem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resvlem.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| resvlem.n | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| Ref | Expression |
|---|---|
| resvlem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvlem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resvlem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 5 | 2, 3, 4 | resvid2 33302 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 6 | 5 | fveq2d 6862 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 7 | 6 | 3expib 1122 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 8 | 2, 3, 4 | resvval2 33303 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 9 | 8 | fveq2d 6862 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
| 10 | resvlem.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 11 | resvlem.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
| 12 | 10, 11 | setsnid 17178 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 13 | 9, 12 | eqtr4di 2782 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 14 | 13 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 15 | 7, 14 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 16 | 10 | str0 17159 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
| 17 | 16 | eqcomi 2738 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
| 18 | reldmresv 33300 | . . . . . 6 ⊢ Rel dom ↾v | |
| 19 | 17, 2, 18 | oveqprc 17162 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
| 20 | 19 | eqcomd 2735 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | 15, 21 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 23 | 1, 22 | eqtr4id 2783 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 Slot cslot 17151 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 ↾v cresv 33298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 df-slot 17152 df-resv 33299 |
| This theorem is referenced by: resvbas 33306 resvplusg 33307 resvvsca 33308 resvmulr 33309 |
| Copyright terms: Public domain | W3C validator |