Step | Hyp | Ref
| Expression |
1 | | resvlem.e |
. 2
β’ πΆ = (πΈβπ) |
2 | | resvlem.r |
. . . . . . 7
β’ π
= (π βΎv π΄) |
3 | | eqid 2733 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
4 | | eqid 2733 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
5 | 2, 3, 4 | resvid2 32442 |
. . . . . 6
β’
(((Baseβ(Scalarβπ)) β π΄ β§ π β V β§ π΄ β π) β π
= π) |
6 | 5 | fveq2d 6896 |
. . . . 5
β’
(((Baseβ(Scalarβπ)) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ)) |
7 | 6 | 3expib 1123 |
. . . 4
β’
((Baseβ(Scalarβπ)) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ))) |
8 | 2, 3, 4 | resvval2 32443 |
. . . . . . 7
β’ ((Β¬
(Baseβ(Scalarβπ)) β π΄ β§ π β V β§ π΄ β π) β π
= (π sSet β¨(Scalarβndx),
((Scalarβπ)
βΎs π΄)β©)) |
9 | 8 | fveq2d 6896 |
. . . . . 6
β’ ((Β¬
(Baseβ(Scalarβπ)) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ
) = (πΈβ(π sSet β¨(Scalarβndx),
((Scalarβπ)
βΎs π΄)β©))) |
10 | | resvlem.f |
. . . . . . 7
β’ πΈ = Slot (πΈβndx) |
11 | | resvlem.n |
. . . . . . 7
β’ (πΈβndx) β
(Scalarβndx) |
12 | 10, 11 | setsnid 17142 |
. . . . . 6
β’ (πΈβπ) = (πΈβ(π sSet β¨(Scalarβndx),
((Scalarβπ)
βΎs π΄)β©)) |
13 | 9, 12 | eqtr4di 2791 |
. . . . 5
β’ ((Β¬
(Baseβ(Scalarβπ)) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ)) |
14 | 13 | 3expib 1123 |
. . . 4
β’ (Β¬
(Baseβ(Scalarβπ)) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ))) |
15 | 7, 14 | pm2.61i 182 |
. . 3
β’ ((π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ)) |
16 | 10 | str0 17122 |
. . . . . . 7
β’ β
=
(πΈββ
) |
17 | 16 | eqcomi 2742 |
. . . . . 6
β’ (πΈββ
) =
β
|
18 | | reldmresv 32440 |
. . . . . 6
β’ Rel dom
βΎv |
19 | 17, 2, 18 | oveqprc 17125 |
. . . . 5
β’ (Β¬
π β V β (πΈβπ) = (πΈβπ
)) |
20 | 19 | eqcomd 2739 |
. . . 4
β’ (Β¬
π β V β (πΈβπ
) = (πΈβπ)) |
21 | 20 | adantr 482 |
. . 3
β’ ((Β¬
π β V β§ π΄ β π) β (πΈβπ
) = (πΈβπ)) |
22 | 15, 21 | pm2.61ian 811 |
. 2
β’ (π΄ β π β (πΈβπ
) = (πΈβπ)) |
23 | 1, 22 | eqtr4id 2792 |
1
β’ (π΄ β π β πΆ = (πΈβπ
)) |