| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlem | Structured version Visualization version GIF version | ||
| Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| resvlem.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
| resvlem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resvlem.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| resvlem.n | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| Ref | Expression |
|---|---|
| resvlem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvlem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resvlem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 5 | 2, 3, 4 | resvid2 33287 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 6 | 5 | fveq2d 6821 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 7 | 6 | 3expib 1122 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 8 | 2, 3, 4 | resvval2 33288 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 9 | 8 | fveq2d 6821 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
| 10 | resvlem.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 11 | resvlem.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
| 12 | 10, 11 | setsnid 17114 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 13 | 9, 12 | eqtr4di 2784 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 14 | 13 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 15 | 7, 14 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 16 | 10 | str0 17095 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
| 17 | 16 | eqcomi 2740 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
| 18 | reldmresv 33285 | . . . . . 6 ⊢ Rel dom ↾v | |
| 19 | 17, 2, 18 | oveqprc 17098 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
| 20 | 19 | eqcomd 2737 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | 15, 21 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 23 | 1, 22 | eqtr4id 2785 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 〈cop 4577 ‘cfv 6476 (class class class)co 7341 sSet csts 17069 Slot cslot 17087 ndxcnx 17099 Basecbs 17115 ↾s cress 17136 Scalarcsca 17159 ↾v cresv 33283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-sets 17070 df-slot 17088 df-resv 33284 |
| This theorem is referenced by: resvbas 33291 resvplusg 33292 resvvsca 33293 resvmulr 33294 |
| Copyright terms: Public domain | W3C validator |