Proof of Theorem metideq
Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐷 ∈ (PsMet‘𝑋)) |
2 | | metidss 31841 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
⊆ (𝑋 × 𝑋)) |
3 | | dmss 5811 |
. . . . . . . . 9
⊢
((~Met‘𝐷) ⊆ (𝑋 × 𝑋) → dom (~Met‘𝐷) ⊆ dom (𝑋 × 𝑋)) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom
(~Met‘𝐷)
⊆ dom (𝑋 ×
𝑋)) |
5 | | dmxpid 5839 |
. . . . . . . 8
⊢ dom
(𝑋 × 𝑋) = 𝑋 |
6 | 4, 5 | sseqtrdi 3971 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom
(~Met‘𝐷)
⊆ 𝑋) |
7 | 1, 6 | syl 17 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → dom (~Met‘𝐷) ⊆ 𝑋) |
8 | | xpss 5605 |
. . . . . . . . . 10
⊢ (𝑋 × 𝑋) ⊆ (V × V) |
9 | 2, 8 | sstrdi 3933 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) →
(~Met‘𝐷)
⊆ (V × V)) |
10 | | df-rel 5596 |
. . . . . . . . 9
⊢ (Rel
(~Met‘𝐷)
↔ (~Met‘𝐷) ⊆ (V × V)) |
11 | 9, 10 | sylibr 233 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → Rel
(~Met‘𝐷)) |
12 | 1, 11 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → Rel (~Met‘𝐷)) |
13 | | simprl 768 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐴(~Met‘𝐷)𝐵) |
14 | | releldm 5853 |
. . . . . . 7
⊢ ((Rel
(~Met‘𝐷)
∧ 𝐴(~Met‘𝐷)𝐵) → 𝐴 ∈ dom (~Met‘𝐷)) |
15 | 12, 13, 14 | syl2anc 584 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐴 ∈ dom (~Met‘𝐷)) |
16 | 7, 15 | sseldd 3922 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐴 ∈ 𝑋) |
17 | | simprr 770 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐸(~Met‘𝐷)𝐹) |
18 | | releldm 5853 |
. . . . . . 7
⊢ ((Rel
(~Met‘𝐷)
∧ 𝐸(~Met‘𝐷)𝐹) → 𝐸 ∈ dom (~Met‘𝐷)) |
19 | 12, 17, 18 | syl2anc 584 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐸 ∈ dom (~Met‘𝐷)) |
20 | 7, 19 | sseldd 3922 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐸 ∈ 𝑋) |
21 | | psmetsym 23463 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴)) |
22 | 1, 16, 20, 21 | syl3anc 1370 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴)) |
23 | | psmetf 23459 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
24 | 23 | fovrnda 7443 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐸𝐷𝐴) ∈
ℝ*) |
25 | 1, 20, 16, 24 | syl12anc 834 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐸𝐷𝐴) ∈
ℝ*) |
26 | 22, 25 | eqeltrd 2839 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) ∈
ℝ*) |
27 | | rnss 5848 |
. . . . . . . 8
⊢
((~Met‘𝐷) ⊆ (𝑋 × 𝑋) → ran (~Met‘𝐷) ⊆ ran (𝑋 × 𝑋)) |
28 | 2, 27 | syl 17 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → ran
(~Met‘𝐷)
⊆ ran (𝑋 ×
𝑋)) |
29 | | rnxpid 6076 |
. . . . . . 7
⊢ ran
(𝑋 × 𝑋) = 𝑋 |
30 | 28, 29 | sseqtrdi 3971 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → ran
(~Met‘𝐷)
⊆ 𝑋) |
31 | 1, 30 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ran (~Met‘𝐷) ⊆ 𝑋) |
32 | | relelrn 5854 |
. . . . . 6
⊢ ((Rel
(~Met‘𝐷)
∧ 𝐴(~Met‘𝐷)𝐵) → 𝐵 ∈ ran (~Met‘𝐷)) |
33 | 12, 13, 32 | syl2anc 584 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐵 ∈ ran (~Met‘𝐷)) |
34 | 31, 33 | sseldd 3922 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐵 ∈ 𝑋) |
35 | 23 | fovrnda 7443 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋)) → (𝐵𝐷𝐸) ∈
ℝ*) |
36 | 1, 34, 20, 35 | syl12anc 834 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐸) ∈
ℝ*) |
37 | | relelrn 5854 |
. . . . . . 7
⊢ ((Rel
(~Met‘𝐷)
∧ 𝐸(~Met‘𝐷)𝐹) → 𝐹 ∈ ran (~Met‘𝐷)) |
38 | 12, 17, 37 | syl2anc 584 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐹 ∈ ran (~Met‘𝐷)) |
39 | 31, 38 | sseldd 3922 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → 𝐹 ∈ 𝑋) |
40 | | psmetsym 23463 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹)) |
41 | 1, 39, 34, 40 | syl3anc 1370 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹)) |
42 | 23 | fovrnda 7443 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹𝐷𝐵) ∈
ℝ*) |
43 | 1, 39, 34, 42 | syl12anc 834 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐹𝐷𝐵) ∈
ℝ*) |
44 | 41, 43 | eqeltrrd 2840 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐹) ∈
ℝ*) |
45 | | psmettri2 23462 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸))) |
46 | 1, 34, 16, 20, 45 | syl13anc 1371 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸))) |
47 | | psmetsym 23463 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
48 | 1, 16, 34, 47 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
49 | 16, 34 | jca 512 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
50 | | metidv 31842 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
51 | 50 | biimpa 477 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ 𝐴(~Met‘𝐷)𝐵) → (𝐴𝐷𝐵) = 0) |
52 | 1, 49, 13, 51 | syl21anc 835 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐵) = 0) |
53 | 48, 52 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐴) = 0) |
54 | 53 | oveq1d 7290 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (0 +𝑒 (𝐵𝐷𝐸))) |
55 | | xaddid2 12976 |
. . . . . 6
⊢ ((𝐵𝐷𝐸) ∈ ℝ* → (0
+𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸)) |
56 | 36, 55 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (0 +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸)) |
57 | 54, 56 | eqtrd 2778 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸)) |
58 | 46, 57 | breqtrd 5100 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐸)) |
59 | | psmettri2 23462 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸))) |
60 | 1, 39, 34, 20, 59 | syl13anc 1371 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸))) |
61 | | psmetsym 23463 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹)) |
62 | 1, 39, 20, 61 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹)) |
63 | 20, 39 | jca 512 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐸 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) |
64 | | metidv 31842 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (𝐸(~Met‘𝐷)𝐹 ↔ (𝐸𝐷𝐹) = 0)) |
65 | 64 | biimpa 477 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) ∧ 𝐸(~Met‘𝐷)𝐹) → (𝐸𝐷𝐹) = 0) |
66 | 1, 63, 17, 65 | syl21anc 835 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐸𝐷𝐹) = 0) |
67 | 62, 66 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐹𝐷𝐸) = 0) |
68 | 67 | oveq2d 7291 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = ((𝐹𝐷𝐵) +𝑒 0)) |
69 | | xaddid1 12975 |
. . . . . 6
⊢ ((𝐹𝐷𝐵) ∈ ℝ* → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵)) |
70 | 43, 69 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵)) |
71 | 68, 70, 41 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = (𝐵𝐷𝐹)) |
72 | 60, 71 | breqtrd 5100 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ (𝐵𝐷𝐹)) |
73 | 26, 36, 44, 58, 72 | xrletrd 12896 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹)) |
74 | 23 | fovrnda 7443 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (𝐴𝐷𝐹) ∈
ℝ*) |
75 | 1, 16, 39, 74 | syl12anc 834 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐹) ∈
ℝ*) |
76 | | psmettri2 23462 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹))) |
77 | 1, 16, 34, 39, 76 | syl13anc 1371 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹))) |
78 | 52 | oveq1d 7290 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (0 +𝑒 (𝐴𝐷𝐹))) |
79 | | xaddid2 12976 |
. . . . . 6
⊢ ((𝐴𝐷𝐹) ∈ ℝ* → (0
+𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹)) |
80 | 75, 79 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (0 +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹)) |
81 | 78, 80 | eqtrd 2778 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹)) |
82 | 77, 81 | breqtrd 5100 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐹)) |
83 | | psmettri2 23462 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹))) |
84 | 1, 20, 16, 39, 83 | syl13anc 1371 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹))) |
85 | | xaddid1 12975 |
. . . . . 6
⊢ ((𝐸𝐷𝐴) ∈ ℝ* → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴)) |
86 | 25, 85 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴)) |
87 | 66 | oveq2d 7291 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = ((𝐸𝐷𝐴) +𝑒 0)) |
88 | 86, 87, 22 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = (𝐴𝐷𝐸)) |
89 | 84, 88 | breqtrd 5100 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ (𝐴𝐷𝐸)) |
90 | 44, 75, 26, 82, 89 | xrletrd 12896 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸)) |
91 | | xrletri3 12888 |
. . 3
⊢ (((𝐴𝐷𝐸) ∈ ℝ* ∧ (𝐵𝐷𝐹) ∈ ℝ*) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸)))) |
92 | 26, 44, 91 | syl2anc 584 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸)))) |
93 | 73, 90, 92 | mpbir2and 710 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹)) |