Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metideq Structured version   Visualization version   GIF version

Theorem metideq 31745
Description: Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metideq ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹))

Proof of Theorem metideq
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐷 ∈ (PsMet‘𝑋))
2 metidss 31743 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
3 dmss 5800 . . . . . . . . 9 ((~Met𝐷) ⊆ (𝑋 × 𝑋) → dom (~Met𝐷) ⊆ dom (𝑋 × 𝑋))
42, 3syl 17 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → dom (~Met𝐷) ⊆ dom (𝑋 × 𝑋))
5 dmxpid 5828 . . . . . . . 8 dom (𝑋 × 𝑋) = 𝑋
64, 5sseqtrdi 3967 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → dom (~Met𝐷) ⊆ 𝑋)
71, 6syl 17 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → dom (~Met𝐷) ⊆ 𝑋)
8 xpss 5596 . . . . . . . . . 10 (𝑋 × 𝑋) ⊆ (V × V)
92, 8sstrdi 3929 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
10 df-rel 5587 . . . . . . . . 9 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
119, 10sylibr 233 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
121, 11syl 17 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → Rel (~Met𝐷))
13 simprl 767 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴(~Met𝐷)𝐵)
14 releldm 5842 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐴(~Met𝐷)𝐵) → 𝐴 ∈ dom (~Met𝐷))
1512, 13, 14syl2anc 583 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴 ∈ dom (~Met𝐷))
167, 15sseldd 3918 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴𝑋)
17 simprr 769 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸(~Met𝐷)𝐹)
18 releldm 5842 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐸(~Met𝐷)𝐹) → 𝐸 ∈ dom (~Met𝐷))
1912, 17, 18syl2anc 583 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸 ∈ dom (~Met𝐷))
207, 19sseldd 3918 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸𝑋)
21 psmetsym 23371 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐸𝑋) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴))
221, 16, 20, 21syl3anc 1369 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴))
23 psmetf 23367 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2423fovrnda 7421 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐴𝑋)) → (𝐸𝐷𝐴) ∈ ℝ*)
251, 20, 16, 24syl12anc 833 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝐷𝐴) ∈ ℝ*)
2622, 25eqeltrd 2839 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ∈ ℝ*)
27 rnss 5837 . . . . . . . 8 ((~Met𝐷) ⊆ (𝑋 × 𝑋) → ran (~Met𝐷) ⊆ ran (𝑋 × 𝑋))
282, 27syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (~Met𝐷) ⊆ ran (𝑋 × 𝑋))
29 rnxpid 6065 . . . . . . 7 ran (𝑋 × 𝑋) = 𝑋
3028, 29sseqtrdi 3967 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → ran (~Met𝐷) ⊆ 𝑋)
311, 30syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ran (~Met𝐷) ⊆ 𝑋)
32 relelrn 5843 . . . . . 6 ((Rel (~Met𝐷) ∧ 𝐴(~Met𝐷)𝐵) → 𝐵 ∈ ran (~Met𝐷))
3312, 13, 32syl2anc 583 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐵 ∈ ran (~Met𝐷))
3431, 33sseldd 3918 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐵𝑋)
3523fovrnda 7421 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐸𝑋)) → (𝐵𝐷𝐸) ∈ ℝ*)
361, 34, 20, 35syl12anc 833 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ∈ ℝ*)
37 relelrn 5843 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐸(~Met𝐷)𝐹) → 𝐹 ∈ ran (~Met𝐷))
3812, 17, 37syl2anc 583 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐹 ∈ ran (~Met𝐷))
3931, 38sseldd 3918 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐹𝑋)
40 psmetsym 23371 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹𝑋𝐵𝑋) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹))
411, 39, 34, 40syl3anc 1369 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹))
4223fovrnda 7421 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹𝑋𝐵𝑋)) → (𝐹𝐷𝐵) ∈ ℝ*)
431, 39, 34, 42syl12anc 833 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐵) ∈ ℝ*)
4441, 43eqeltrrd 2840 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ∈ ℝ*)
45 psmettri2 23370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐸𝑋)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)))
461, 34, 16, 20, 45syl13anc 1370 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)))
47 psmetsym 23371 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
481, 16, 34, 47syl3anc 1369 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
4916, 34jca 511 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝑋𝐵𝑋))
50 metidv 31744 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))
5150biimpa 476 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴(~Met𝐷)𝐵) → (𝐴𝐷𝐵) = 0)
521, 49, 13, 51syl21anc 834 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐵) = 0)
5348, 52eqtr3d 2780 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐴) = 0)
5453oveq1d 7270 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (0 +𝑒 (𝐵𝐷𝐸)))
55 xaddid2 12905 . . . . . 6 ((𝐵𝐷𝐸) ∈ ℝ* → (0 +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5636, 55syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (0 +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5754, 56eqtrd 2778 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5846, 57breqtrd 5096 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐸))
59 psmettri2 23370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹𝑋𝐵𝑋𝐸𝑋)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)))
601, 39, 34, 20, 59syl13anc 1370 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)))
61 psmetsym 23371 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹𝑋𝐸𝑋) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹))
621, 39, 20, 61syl3anc 1369 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹))
6320, 39jca 511 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝑋𝐹𝑋))
64 metidv 31744 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐹𝑋)) → (𝐸(~Met𝐷)𝐹 ↔ (𝐸𝐷𝐹) = 0))
6564biimpa 476 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐹𝑋)) ∧ 𝐸(~Met𝐷)𝐹) → (𝐸𝐷𝐹) = 0)
661, 63, 17, 65syl21anc 834 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝐷𝐹) = 0)
6762, 66eqtrd 2778 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐸) = 0)
6867oveq2d 7271 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = ((𝐹𝐷𝐵) +𝑒 0))
69 xaddid1 12904 . . . . . 6 ((𝐹𝐷𝐵) ∈ ℝ* → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵))
7043, 69syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵))
7168, 70, 413eqtrd 2782 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = (𝐵𝐷𝐹))
7260, 71breqtrd 5096 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ (𝐵𝐷𝐹))
7326, 36, 44, 58, 72xrletrd 12825 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹))
7423fovrnda 7421 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐹𝑋)) → (𝐴𝐷𝐹) ∈ ℝ*)
751, 16, 39, 74syl12anc 833 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ∈ ℝ*)
76 psmettri2 23370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐹𝑋)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)))
771, 16, 34, 39, 76syl13anc 1370 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)))
7852oveq1d 7270 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (0 +𝑒 (𝐴𝐷𝐹)))
79 xaddid2 12905 . . . . . 6 ((𝐴𝐷𝐹) ∈ ℝ* → (0 +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8075, 79syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (0 +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8178, 80eqtrd 2778 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8277, 81breqtrd 5096 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐹))
83 psmettri2 23370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐴𝑋𝐹𝑋)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)))
841, 20, 16, 39, 83syl13anc 1370 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)))
85 xaddid1 12904 . . . . . 6 ((𝐸𝐷𝐴) ∈ ℝ* → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴))
8625, 85syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴))
8766oveq2d 7271 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = ((𝐸𝐷𝐴) +𝑒 0))
8886, 87, 223eqtr4d 2788 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = (𝐴𝐷𝐸))
8984, 88breqtrd 5096 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ (𝐴𝐷𝐸))
9044, 75, 26, 82, 89xrletrd 12825 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))
91 xrletri3 12817 . . 3 (((𝐴𝐷𝐸) ∈ ℝ* ∧ (𝐵𝐷𝐹) ∈ ℝ*) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))))
9226, 44, 91syl2anc 583 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))))
9373, 90, 92mpbir2and 709 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  cfv 6418  (class class class)co 7255  0cc0 10802  *cxr 10939  cle 10941   +𝑒 cxad 12775  PsMetcpsmet 20494  ~Metcmetid 31738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-xadd 12778  df-psmet 20502  df-metid 31740
This theorem is referenced by:  pstmfval  31748
  Copyright terms: Public domain W3C validator